a2 United States Patent

Culbert et al.

US009317090B2

US 9,317,090 B2
Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

METHODS AND APPARATUSES FOR
OPERATING A DATA PROCESSING SYSTEM

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Michael Culbert, Monte Sereno, CA
(US); Keith Alan Cox, Sunnyvale, CA
(US); Brian Howard, Portola Valley, CA
(US); Josh de Cesare, Campbell, CA
(US); Richard Charles Williams,
Saratoga, CA (US); Dave Robbins
Falkenburg, San Jose, CA (US); Daisie
Iris Huang, Oakland, CA (US); David
Radcliffe, Hood River, OR (US)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/697,471

Filed: Apr. 27, 2015
Prior Publication Data
US 2015/0338892 Al Nov. 26, 2015

Related U.S. Application Data

Continuation of application No. 13/890,694, filed on
May 9, 2013, now Pat. No. 9,043,627, which is a
division of application No. 13/550,922, filed on Jul.
17, 2012, now Pat. No. 8,448,000, which is a division

(Continued)

Int. CL.

GO6F 1/00 (2006.01)

GO6F 1/26 (2006.01)
(Continued)

U.S. CL

CPC ... GO6F 1/26 (2013.01); GO5D 23/1934

(2013.01); GOSD 23/24 (2013.01);

(Continued)

Field of Classification Search

CPC .......... GOGF 1/26; GOGF 1/20; GOGF 1/3203;

GOG6F 1/324; GOG6F 1/329; GOG6F 1/3296;

GO5D 23/1934; GO5D 23/24; GO5D 23/2442,

YO02B 60/1285; Y02B 60/1217; Y10S 706/90

USPC oo 713/300, 320, 322; 718/102
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,167,024 A
5,452,277 A

11/1992  Smith et al.
9/1995 Bajorek et al.

(Continued)

FOREIGN PATENT DOCUMENTS

DE 19930 166 Al 1/2001
EP 0632360 Al 1/1995

(Continued)
OTHER PUBLICATIONS

Hashimoto, Clock-up, Silencing of the machine . . . Get 120% per-
formance Free-of-charge tune of the motherboard by software,
DOS/V Power Report, vol. 14, No. 6, Japan, Impress Corporation,
vol. 14, p. 73.

PCT International Preliminary Report on Patentablity and Written
Opinion for PCT Int’l. Application No. PCT/US2006/029244,
mailed Mar. 6, 2008, (14 pages).

PCT International Search Report and Written Opinion for PCT Int’l.
Application No. PCT/US2006/029244, mailed Sep. 17, 2007, (22

ages).
II)’CgT I)nternational Search Report and Written Opinion for PCT Int’1.
Application No. PCT/US2008/013975 mailed Mar. 17, 2009, (13
ages).
II)’CgT I)nternational Search Report and Written Opinion for PCT Int’1.
Application No. US2006/029049 mailed Nov. 29, 2006, (14 pages).
PCT Preliminary Report on Patentablity and Written Opinion for
PCT Int’l. Application No. PCT/US2006/029049, mailed Mar. 6,
2008, (10 pages).

(Continued)

Primary Examiner — Ji H Bae
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

Methods and apparatuses to manage working states of a data
processing system. At least one embodiment of the present
invention includes a data processing system with one or more
sensors (e.g., physical sensors such as tachometer and ther-
mistors, and logical sensors such as CPU load) for fine grain
control of one or more components (e.g., processor, fan, hard
drive, optical drive) of the system for working conditions that
balance various goals (e.g., user preferences, performance,
power consumption, thermal constraints, acoustic noise). In
one example, the clock frequency and core voltage for a
processor are actively managed to balance performance and
power consumption (heat generation) without a significant
latency. In one example, the speed of a cooling fan is actively
managed to balance cooling effort and noise (and/or power
consumption).

20 Claims, 18 Drawing Sheets




US 9,317,090 B2

Page 2

(60)

(1)

(52)

(56)

Related U.S. Application Data

of application No. 12/267,329, filed on Nov. 7, 2008,
now Pat. No. 8,237,386, which is a division of appli-
cation No. 10/917,719, filed on Aug. 12, 2004, now
Pat. No. 7,451,332.

Provisional application No. 60/495,447, filed on Aug.
15, 2003.
Int. CL.
GO6F 1/32 (2006.01)
GO6F 9/16 (2006.01)
GO05D 23/24 (2006.01)
GO6F 1/20 (2006.01)
GO05D 23/19 (2006.01)
U.S. CL
CPC ............. GO5D 23/2442 (2013.01); GOGF 1/20
(2013.01); GO6F 1/3203 (2013.01); GOGF
17324 (2013.01); GOGF 1/329 (2013.01); GOGF
173296 (2013.01); Y02B 60/1217 (2013.01);
Y02B 60/1285 (2013.01); Y10S 706/90
(2013.01)
References Cited
U.S. PATENT DOCUMENTS
5,511,205 A 4/1996 Kannan et al.
5,520,153 A 5/1996 Milunas
5,532,935 A 7/1996 Ninomiya et al.
5,532,945 A 7/1996 Robinson
5,560,022 A 9/1996 Dunstan et al.
5,627,412 A 5/1997 Beard
5,721,837 A 2/1998 Kikinis et al.
5,737,616 A 4/1998 Watanabe
5,812,860 A 9/1998 Horden et al.
5,825,674 A 10/1998 Jackson
5,842,027 A 11/1998 Oprescu et al.
5,905,978 A 5/1999 Smith et al.
5,915,838 A 6/1999 Stals et al.
5,963,424 A 10/1999 Hileman et al.
5,963,887 A 10/1999 Giorgio
5,964,879 A 10/1999 Dunstan et al.
6,000,622 A 12/1999 Tonner et al.
6,006,168 A 12/1999 Schumann et al.
6,037,732 A 3/2000 Alfano et al.
6,112,164 A 8/2000 Hobson
6,122,758 A 9/2000 Johnson et al.
6,134,167 A 10/2000 Atkinson
6,134,667 A 10/2000 Suzuki et al.
6,170,067 Bl 1/2001 Liu et al.
6,270,252 Bl 8/2001 Siefert
6,415,388 Bl 7/2002 Browning et al.
6,470,289 Bl  10/2002 Peters et al.
6,477,156 B1  11/2002 Ala-Laurila et al.
6,535,798 B1* 3/2003 Bhatia ............... GO5D 23/1917
327/113
6,545,438 Bl 4/2003 Mays, II
6,573,671 B2 6/2003 Montero et al.
6,594,771 Bl 7/2003 Koerber et al.
6,650,074 B1  11/2003 Vyssotski et al.
6,700,339 B2 3/2004 Vyssotski et al.
6,718,474 Bl 4/2004 Somers et al.
6,745,117 Bl 6/2004 Thacher et al.
6,871,291 B2 3/2005 Chan et al.
6,888,332 B2 5/2005 Matsushita
6,889,332 B2 5/2005 Helms et al.
6,920,874 Bl 7/2005  Siegel
6,925,573 B2 8/2005 Bodas
6,928,559 Bl 8/2005 Beard
6,952,782 B2 10/2005 Staiger
6,986,069 B2 1/2006 Oehler et al.
7,032,116 B2 4/2006 Cooper
7,036,027 B2 4/2006 Kim et al.

7,111,178
7,134,029
7,139,920
7,162,651
7,171,570
7,177,728
7,178,043
7,194,646
7,228,448
7,243,243
7,272,732
7,275,380
7,295,949
7,302,687

7,310,737
7,313,706
7,353,133
7,383,451
7,401,644
7,421,598
7,421,601
7,451,332

7,562,234
7,640,760
7,788,516
7,802,120
7,882,369

8,237,386

8,332,679
8,374,730

8,448,000
9,043,627

2001/0021217
2002/0007463
2002/0020755
2002/0065049
2002/0083354
2002/0099962
2002/0112491
2002/0143488
2002/0149911
2002/0194509
2003/0053293
2003/0126475
2003/0149904
2003/0188210
2004/0003301
2004/0003303
2004/0044914
2004/0064745
2004/0088590
2004/0117680
2004/0133816
2004/0148528
2004/0159240
2004/0163001
2004/0181698
2004/0210787
2005/0015764
2005/0055590
2005/0102539
2005/0132371
2005/0136989
2005/0138440
2005/0143865
2005/0149540
2005/0174737
2005/0182986
2005/0210304
2005/0240786
2005/0278556
2005/0283683

B2
B2
B2
B2
B2
B2
B2
Bl
B2
B2
B2
B2
B2
B2

B2
B2
B2
B2
B2
B2
B2
B2

B2
B2
B2
B2
Bl

B2

B2
B2

B2

B2

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

9/2006
11/2006
11/2006

1/2007

1/2007

2/2007

2/2007

3/2007

6/2007

7/2007

9/2007
10/2007
11/2007
11/2007

12/2007
12/2007
4/2008
6/2008
7/2008
9/2008
9/2008
11/2008

7/2009
1/2010
8/2010
9/2010
2/2011

82012

12/2012
2/2013

5/2013
5/2015

9/2001
1/2002
2/2002
5/2002
6/2002
7/2002
8/2002
10/2002
10/2002
12/2002
3/2003
7/2003
8/2003
10/2003
1/2004
1/2004
3/2004
4/2004
5/2004
6/2004
7/2004
7/2004
8/2004
8/2004
9/2004
10/2004
1/2005
3/2005
5/2005
6/2005
6/2005
6/2005
6/2005
7/2005
8/2005
8/2005
9/2005
10/2005
12/2005
12/2005

Rusu et al.
Hepner et al.
Williams
Brockhaus
Cox et al.
Gardner
Nakazato
Watts, Jr.
Anderson et al.
Gedeon
Farkas et al.
Durant et al.
Vorenkamp et al.
Austin ..o GO6F 9/5083
714/E11.192
Patel et al.
Williams et al.
Park
Matsushima et al.
Ziarnik et al.
Brittain et al.
Bose et al.
Culbert .......cooene. GOGF 1/206
713/300
Conroy et al.
Bash et al.
Conroy et al.
Conroy et al.
Kelleher ............... GO6F 1/3203
345/419
GO05D 23/2442
318/471

Culbert ..............

Conroy et al.
CONroy .....ccccveeenene GOG6F 1/206
361/679.02
GO5D 23/2442
318/471
GO5D 23/2442
713/300

Culbert ..............
Culbert ..............

Gunther et al.
Fung
Matsushita
Chauvel et al.
Adachi
Nakamura
Malone et al.
Cooper et al.
Bishop et al.
Plante et al.
Beitelmal et al.
Bodas

Kim
Nakazato
Nguyen
Ocehler et al.
Gedeon
Kadambi
Leeetal.
Naffziger
Miyairi
Silvester
Lyall

Bodas
Williams
Cox et al.
Gaur

Farkas et al.
Hepner et al.
Lopez-Estrada
Dove

Barr et al.
Gardner
Chan et al.
Meir
Anderson et al.
Hartung et al.
Ranganathan
Smith et al.
Abedi et al.



US 9,317,090 B2

Page 3
(56) References Cited WO WO 03/073187 A2 9/2003
WO  WO2006/019973 Al 2/2006
U.S. PATENT DOCUMENTS WO WO 2007/024403 A2 3/2007
2006/0005057 Al 1/2006 Nalawadi et al. . OTHER PUBLICATIONS ,
5006/0016901 Al /2006 Reitelmal et al. PCT _Inte_rnatlonal Search Report and Written Opinion for PCT Int’l.
2006/0036878 Al 2/2006 Rothman et al Appllcat_lon_No. US2008/0_14036, mailed Jul. 22, 2010, _(14 pages).
' PCT Invitation to Pay Additional Fees for PCT International Appln
2006/0047983 Al 3/2006 Aleyraz et al. No. US2004/026444, mailed Feb. 25, 2005 (9 pa
2006/0098463 Al 5/2006 Baurle et al. : - ; - 25, 2005 (9 pages).
PCT International Search Report and Written Opinion for PCT Inter-
%882;8}%‘7‘32 2} ;gggg g/{ﬁ?ﬂf}flyn: :1~al national Appln No. US2004/026444, mailed Aug. 19, 2005 (24
: ages ).
%882;8;22;22 2} 1?@882 E_e e(ti al].) G cal %% A)ppl. No. 90/013,162 Request for Ex Parte Reexamination filed
ineda De Gyvez et al. on Feb. 24, 2014, of U.S. Pat. No. 8,448,000
2006/0288241 Al 12/2006 Fc?lter etal. Information Disclosure Statement by Applicant Form PTO/SB/08a
2006/0294400 Al  12/2006 Diefenbaugh et al. for U.S. Appl. No. 90/013,162, filed Feb. 24, 2014.
2007/0016706 Al 1/2007 Arnold et al. U.S. Appl. No. 90/013,162, Exhibit 8, Part A of Ex Parte Reexami-
2007/0049134 Al 3/2007 Conroy etal. nation filed on Feb. 24, 2014, of U.S. Pat. No. 8,448,000.
2007/0050644 Al 3/2007 Merkin U.S. Appl. No. 90/013,162, Exhibit 8, Part B of Ex Parte Reexami-
2007/0067136 Al 3/2007 Conroy et al. nation filed on Feb. 24, 2014, of U.S. Pat. No. 8,448,000.
2007/0083779 Al 4/2007 Misaka et al. U.S. Appl. No. 90/013,162, Exhibit 8, Part C of Ex Parte Reexami-
2008/0276111 Al 11/2008 Jacoby et al. nation filed on Feb. 24, 2014, of U.S. Pat. No. 8,448,000.
2010/0040085 Al 2/2010 Olderdissen et al. U.S. Appl. No. 90/013,162, Exhibit 8, Part D of Ex Parte Reexami-
2010/0115293 Al 5/2010 Rotem et al. nation filed on Feb. 24, 2014, of U.S. Pat. No. 8,448,000.
2011/0001358 Al 1/2011 Conroy et al. U.S. Appl. No. 90/013,162, Exhibit 8, Part E of Ex Parte Reexami-
2011/0154064 Al 6/2011 Niekrewicz et al. nation filed on Feb. 24, 2014, of U.S. Pat. No. 8,448,000.
U.S. Appl. No. 90/013,162, Exhibit 8, Part F of Ex Parte Reexami-
FOREIGN PATENT DOCUMENTS nation filed on Feb. 24, 2014, of U.S. Pat. No. 8,448,000.
U.S. Appl. No. 90/013,162, Exhibit 8, Part G of Ex Parte Reexami-
GB 2405236 A 2/2005 nation filed on Feb. 24, 2014, of U.S. Pat. No. §,448,000.
Jp 2002-163038 6/2002 U.S. Appl. No. 90/013,162, Exhibit 8, Part H of Ex Parte Reexami-
e s o 00 nation filed on Feb. 24, 2014, o U.S. Pat. No. 8448.000.
P 5003-295986 10/2003 US Appl. No. 90/013,162, Exhibit 8, Part I of Ex Parte Reexamina-
WO WO 99/17184 4/1999 U.S. Appl. No. 90/013,162, Exhibit 8, Part J of Ex Parte Reexamina-
WO WO 01/35200 Al 5/2001 tion filed on Feb. 24, 2014, of U.S. Pat. No. 8,448,000.
WO WO 03/060676 A2 7/2003
WO WO 03/060678 A2 7/2003 * cited by examiner



U.S. Patent Apr. 19,2016 Sheet 1 of 18 US 9,317,090 B2

1034
o
gl
Cache M/

&

R 187 i) 308
F el e = E o

Monwolaiis
ARTORTOTEsS REE ' ng&k i RMamory
; C i hard dived

3 : I &

f_/ , S 3 s \

{j Bus ::‘;
™ o
\\ & & . p ~

108 48 12
¥ -~ % e o
Diszplay Gontroller W3 e Hensors
& Display Devics Tontratiorx} 1 {a.g., fan tachomalsr
MR EIIULD SENSOT,
Hoht sensord
30
3 s
HE Daviosis}

f8.g. mouse, oF keyboard, of

modem, o nebwork interiace,

of pefraer, ov scannsy, of vided
samaiad

Fig. 1



U.S. Patent

Apr. 19,2016

US 9,317,090 B2

Sheet 2 of 18
281
Foriphorat S
Cavices ang
Mgk
i
>
248
&
Machine Readsbis Media
23?\
. Applioation
3 FooRms
| {@ 235\ 23:&\
&
N’ 213
> oo
: fam 5 221
& SRR
s
& 2% l
. e o Mors hanvice 3
@M Processons Lo
B
223
- 208 Davios 2
287 £
&
Porsar
[3(3:33 Safaly N
] : Manapemant
\ij}‘“‘“"’“’ Teipger s,}as-asa ?PMU} 6
&
328
4
Daviee N




U.S. Patent

Apr. 19,2016

Hoat
Bouns

Haai
Soures

I
&
Haal
Source
424
Cooding
R4

)
£

A
8

334

M7/ N
,i%iHH§ }f 315

Sheet 3 of 18 US 9,317,090 B2
fiug
£
33 224
@ | o
Y Heat
\ Saurme
Powar Mansger

i)

Maat
Soinos

Louing
Boares

B3

Fig, 3



U.S. Patent Apr. 19,2016 Sheet 4 of 18 US 9,317,090 B2

IG0
!f
B A i
/331 71 Themmal o ;
d 4
Cooling 2
31 Sansor Sowoe & §
< Hmat
Paat \ j Source
Senser
T s
;,a“
Haat n Host
Goures :
et ; 40
Soures ! i
. i
Fis ! H
ank 5 P 402
Thermst sone B ! Thermsl sns © i Trewnat 2008 §

Fig. 4



U.S. Patent Apr. 19,2016 Sheet 5 of 18 US 9,317,090 B2




U.S. Patent Apr. 19,2016 Sheet 6 of 18 US 9,317,090 B2

( Run } 413

811 _/
N

\ §18
\\ 8ig
N

Fig. 8



US 9,317,090 B2

Sheet 7 of 18

Apr. 19,2016

U.S. Patent

et )

fragusncy

B

H o 2 ,
H M H i
N H H '
5 H : !
H M H .
H H ¢ !
H M H i
H H H !
. H ' :
z 3 . :
b H H
: g2 4 H
" oo H H
‘ [ H R
H s H M
i »
H c
: e .
i 11
o o °
H Bene v
B s
3 :
H 5
H .
H H
: 4
H & H
H H :
‘ % ! :
* A b ’
H b M H
H H H H
. Lhoo: g3 M H
H o2 P 3 H
H e M :
3 % H :
. b ° :
H H : :
M H H
H 5 H H
H M 3
3 H H '
H H £
3 H H H
[ T S T3 e rsm et cvw e e e
L4
s 7 ” %
H H H :
. H : H
H H H :
L H H :
H ; H 3
Y H 4 :
H H H 3
1 H H :
H H H s
H : H :
] H H 3
H ! H :
H i H i
H H 2 :
H i : v
. ¢ H £
H H : ¢
H H H ¢
H . H :
. H H :
H o H 4
H : : :
H H H H
4 H H :
H H H :
4 H H 3
H H H ;
. I : H
: ¥ : 3
: 1 H H
‘ H : 1
: H H ¢
. H ¢ :
H H ‘ :
H i H
‘ H H
. H £
i . H H
&
= >

Fig. 7



U.S. Patent Apr. 19,2016 Sheet 8 of 18 US 9,317,090 B2

$53
.................... senmerenenbonrene,
B8 : Fn S
[T : &7 ;
i : & MﬁS‘P H
[ RAM : :
{m.g., DDA} : apy Ssngo! H
' d i :
m g@t& Lirunococrmyorsvavsenssusp onmaayavd .
J FR . erednns
Hard Drive s i - : a0 &33;
; !
! Fangary
ST :
- 1S Contratier ™ i N
{South Bridge} N Sridge} : : 843 i
i1 oy g
Cipical Db R Power !
5.9, TO ROM, BVE E L1 Pack a1
O, CD RIRW, o £ e Bl v g
VD RIRW) 4 Bonnr . B :
AMamagenan controlior A g
Unil (PR § wag 2
oo beseocrororarmrmmanrarsvare .,{‘.a..,.
“ 17 854
Hagt Bin B35 / g1
) y_e"

Kanpar Power I Fan

'\\i,f | Lindt !

Fast Rips




U.S. Patent Apr. 19,2016 Sheet 9 of 18 US 9,317,090 B2

$31
i
‘ Liavice Trae Bood ROM
RN Y
iak) FiE
Gigvics inkunation
o B 83
£
Fensor . . Contrat
Dirfvar = > Diriver
Thamna! Manager
4§
n] 805
& ¥ 7
4 £
Davice Driver Device Driver
21 B33
J‘/ j
Usar E Syalam
Prafarances E infonraion

Fig. 8



U.S. Patent Apr. 19, 2016 Sheet 10 of 18 US 9,317,090 B2
7.8
1.8 ;
1009 ;fsq}ze Tum
Cnoling down
25w P Coid "\.}
o4
1021 o,
35 B -5 & & P g

Fig. 10



US 9,317,090 B2

Sheet 11 of 18

Apr. 19,2016

U.S. Patent

ag

&0

2
z ) -
o &
= H
58 = H
= & . & -
: ? £ 4
" 2
- ws g
B 8
. np * A+ e . o
1 L bR R i e :....;.nnnﬁ!,!i,ﬁ!ﬁ.i.ﬂ\ta!itﬁ .
. 2 9 wﬁm -
- . L=
L pd g .tt 3\»‘\
= ) . i
.~ L . o
ﬂq.‘.tﬁtv» I\A (1 -, o - s
et - ‘.-.'..
y-\t g .
1.5 =
eyt s e s s e e - o 2 i
; ‘ - B
: i W
: - e
; P
: 5 L.
H [ S S o
: =
H ]
: :
|
wn Rmu oy m m
4 s Lo}
- & & = b =

3
a
&
3
Loy
H
P oem
H
W.w m 1...../
= N.fm )
: =
e
b3S 1
: g2
t 2
2 “ T -8
i
s H R -
i o v
...................... (. -
; e
{
= i S
£
¢
£
w ¢ ee M}
£
£
¢
o ¢
s e e
H 3,\\ *
M 255
; -
H
(57 -
% : e
; .
i
i
o # @
L ] 1

Fig. 11



U.S. Patent Apr. 19, 2016 Sheet 12 of 18 US 9,317,090 B2

Controld
Poind
R Rl 02

¢
H
¢

. s € « O8O0 & P o € e 4 A RS A 3 A a0 MY A SIS W e § OD8 £ D0R € 0¥ 1 £ 0 € £+ GQOGOQOGI R ORI UIIRIpRpOnne g \

8,5~

AG

B1: <3 5 & ] 15 3% 43

Fig. 12



U.S. Patent Apr. 19, 2016 Sheet 13 of 18 US 9,317,090 B2
13
Soplication ngmmsi
1339 133 3
£ i :
é é
g Sinta Fowar
Wiatcher Manapemend
1303
Vd
1323 1321 1328
< 7
Temperahye Fatform Poaser
Bonsorish 3 Maontior Cont
;
1317
£ ) } e
.
System Sinte mrftfm
.G, Pdnst,
claerishoal}
1338
FIonassar
Sontd

Operaiing System

Fig. 13



U.S. Patent

Apr. 19, 2016

¥

recaivs sensed nformation ke 8
ghursity of physical sansors
npingnanisd it 3 housing of 5 deie
provessing systen

¥

raceiva oad information on prosassing
foads

ﬁ!’

sonind working slates of 3 slurality of
reoureas of the dals protessing
sysiam in the housing scoonting tv e
senged Inicnation and g foad
irstorrsdion

l

Fig. 14

Sheet 14 of 18

1441

4403
&

1804

US 9,317,090 B2



U.S. Patent

Apr. 19, 2016

colinet sensed iniomstion {e.g., CRU

& phorality of saneors of a data
proceasing aysiem

L3
dmiermine s curerd siate of the dala

senaed nfnrnation snd uns?
mrafarenogs

é

predetermined siate dagram

¥

satsctively adhst 8 881 of contols I
changs working sixiss of cmponents
of ihe data processing sysiem I move
the sysiem o 08 suren 3tis 1o
ihe trgst sizle

é

Fig. 18

long s peossuser lemperahures} froem L

srocesaing system bessd of thy <

datannins 3 jerpet stele povding 0 2 s

Sheet 15 of 18

1531

150

1585

15T
‘

US 9,317,090 B2



U.S. Patent

Apr. 19,2016 Sheet 16 of

18

rodact sensed information {a.g., CPU
lond st provessor lempsratures) om
3 plursiity of sensors of 3 data

procsssing ayaiem

166
/

¥

guterning a5 amount of codling
changs bassd on e senssd
infvnation

s

¥

detarming & priodtizad sl of contols
io balanse different gosis

{a.g. parioamnanss, power cunsumpion,

tharmsl consirging, soousiic noise, weaf

praiarance, syaiam consiraing

¥

sgiacively sdiust & subset of tha

s of cooling changs

sriorifized fet of conkrols i effast e

1808

S

J‘i&ﬁ?

Fig, 16

US 9,317,090 B2



U.S. Patent Apr. 19,2016 Sheet 17 of 18 US 9,317,090 B2

HHYSIse

: ¥ saing ¥

NG

J,

FEnrass

; socling ¥ e
l o
1714 % 173
& rd
fncranne the apesd of noresss the OPU
e coniing fan powe vollage
f} e e $7353
1713 ¥ é
< i
NS P ierasss te GPU
coaling ? slook freguansy incranss the ORU
T SOrs wings
H
e : 735
17i8
%, 1728 ! g
insg B
gacrasss e CRPU woling 7 incrnasy the GRU
clook Paguendy ploek froguensy
s
iratd W 1TE7
3 & i 5 ;‘(
dacreass s GRU desrseae i spasd of inoseess tha spoad of
oors vollage tha eooling fan . ihve ooling favs
t ¢ ' 4 , :

Fig. 17



U.S. Patent Apr. 19, 2016 Sheet 18 of 18 US 9,317,090 B2

1801
PMU requssts forced
slosp, If sysiem does
nat sieep In 4 minules,
forced shuldown s
triggerad
T T Tm
1803
€00l e, #100%
Very Hot =100%
Show PMUgopen
L 1621
{id Is closed Coolp,<50%
Coolgm®50% = el B dggs od | Coolg=100%
T € Tsopen™ Tmml TT > T apen T> T‘WT lT € PO ckntis = Thymimivs
1813 1823 :
Iid Is closed Cool.., ~50%
Cooki=20% | Very Warm ™ | Udroned | Godlgmes
Coolgey=50% ~hdis opened Slow FMUgpeeq
T‘T‘m"'rm T’Tum T’Tuwf lT(T’m"Tm
1815 1825
lid s closed COTlep,»505%
CoOlepy=50% > COOlgpy=0%
Coolgpy=0% - Iid Is openad Slow PMUgseey
T“T'am"me—ql TT"T'W T> T'WT lr‘“w'.rmm
1817 1827
lid Is closad e 0%
Cooley,=0% » ( Nomal chgaﬁ's;
Cool., 50% oaf Lid Closed Slow PuU
Gy iit is opened ow speEn

Fig. 18



US 9,317,090 B2

1
METHODS AND APPARATUSES FOR
OPERATING A DATA PROCESSING SYSTEM

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/890,694, filed on May 9, 2013, which is a
divisional of U.S. patent application Ser. No. 13/550,922,
filed on Jul. 17, 2012, now issued as U.S. Pat. No. 8,448,000,
which is a divisional of U.S. patent application Ser. No.
12/267,329 filed on Nov. 7, 2008, now issued as U.S. Pat. No.
8,237,386, which is a divisional of U.S. patent application
Ser. No. 10/917,719 filed on Aug. 12, 2004, now issued as
U.S. Pat. No. 7,451,332, and is also related to and claims the
benefit of the filing date of U.S. Provisional Application No.
60/495,447, filed Aug. 15, 2003, and entitled “Methods and
Apparatuses for Operating a Data Processing System” by the
inventors Michael Culbert, Keith Cox, Brian Howard, Josh
De Cesare, Rich Williams, Dave Falkenburg, Daisie Huang,
and Dave Radcliffe.

FIELD OF THE TECHNOLOGY

The field of technology relates generally to data processing
systems, and more particularly but not exclusively to the
management of power usage and temperature in the data
processing systems.

BACKGROUND

A data processing system (e.g., a desktop computer or a
laptop computer) typically contains a number of components
that consume power from a power supply (e.g., battery or AC
adapter) to perform different tasks. For example, a micropro-
cessor consumes power to perform computation, generating
heat in the process; and, a cooling fan consumes power to
dissipate heat.

Typically, a data processing system is designed for operat-
ing in a given environment to deliver high computation per-
formance. One or more fans and heat sinks are typically used
to cool the system so that the data processing system is not
overheated in a condition of normal use.

To be energy efficient, some computers have power man-
agement systems which may temporarily put a hard drive or a
display screen in alow power mode after idling for a period of
time. When a component is in a low power mode, the com-
ponent is not functioning at least in part (e.g., the display
screen is not displaying images, a hard drive cannot be
accessed for read or write operations, and a section of a chip
is not energized with power to perform computation). In some
systems, a cooling fan is triggered by a temperature sensor
such that the cooling fan is turned on when the sensor detects
that the temperature is above a threshold.

To protect from overheating, some microprocessors have
built-in hardware to slow a processor when the processor is
too hot. However, built-in hardware in a processor that slows
down the processor when the processor is too hot is restricted
to only changing processor performance to regulate the tem-
perature. Intrinsically, it is not able to regulate other devices in
the system or optimize thermal management of the entire
system. Similarly, some computers (e.g., iBook laptops from
Apple Inc) automatically enter into a shut down when it is too
hot (e.g., because a fan failed). Automatic shutdown of a
notebook computer is an emergency solution for unusual
situations, such as when the cooling fan is failing. It does not
regulate the temperature during the normal use of the com-
puter.

Thus, a computing platform (including a processor) is
commonly designed for increased performance, which typi-

10

15

20

25

30

35

40

45

50

55

60

65

2

cally requires increased power consumption. However, com-
puting platforms, especially in mobile applications, are also
designed to reduce power consumption such that a limited
power resource (e.g., a battery) can support the computing
platform for an increased period of usage time. These design
goals are typically in conflict.

One conventional solution to the conflicting design goals is
to provide a means for a user to switch the configuration of the
computing platform between a high performance mode and a
power conservation mode, as desired. For example, a com-
puting platform may allow a user to select the desired mode
via a hardware switch or via a menu and dialog box displayed
by the computing platform. For example, some computers
allow a user to manually select a clock frequency for the
MiCroprocessor.

SUMMARY OF THE DESCRIPTION

Methods and apparatuses to manage working states of a
data processing system are described here. Some of the
embodiments of the present invention are summarized in this
section.

At least one embodiment of the present invention includes
a data processing system with one or more sensors (e.g.,
physical sensors such as tachometer and thermistors, and
logical sensors such as CPU load) for fine grain control of one
or more components (e.g., processor, fan, hard drive, optical
drive) of the system for working conditions that balance vari-
ous goals (e.g., user preferences, performance, power con-
sumption, thermal constraints, acoustic noise). In one
example, the clock frequency and the core voltage for a pro-
cessor are actively managed to balance performance and
power consumption (heat generation) without a significant
latency. In one example, the speed of a cooling fan is actively
managed to balance cooling effort and noise (and/or power
consumption).

Thermal managers according to embodiments of the
present invention monitor the system temperature based on a
number of sensors and conditions (e.g., sensed temperatures,
lid position, battery charging status, current computation
tasks and user preferences) to provide the best of mixture of
cooling (e.g., by controlling one or more cooling fans) and
reduced heat generation (e.g., by adjusting the working states
of the heat generating devices, such as CPU, GPU, hard
drives, optical drives, memory chips, core logic chips and
others) to provide the best performance for the current task.

In one aspect of the present invention, a method to operate
adata processing system includes: determining a control level
for a first component of the data processing system based on
information obtained from a plurality of sensors (e.g., a tem-
perature sensor determining a temperature in the data pro-
cessing system, such as a particular component’s local tem-
perature which is one of many components in the system);
and, automatically adjusting the control of the first compo-
nent according to the control level to move the first compo-
nent from a first working state to a second working state. In
one example, the first component includes a cooling fan of the
data processing system; and, the cooling fan runs at a first
speed in the first working state and a second speed in the
second working state; and, in one example, a duty cycle ofthe
cooling fan is adjusted to run the cooling fan from the first
speed to the second speed. In one example, the first compo-
nent includes a processor; the first working state includes a
first clock frequency and a first core voltage for the processor;
and, the second working state includes a second clock fre-
quency (which may be lower or higher than the first clock
frequency) and a second core voltage (which may be lower or



US 9,317,090 B2

3

higher than the first core voltage) for the processor. In one
example, the first component includes a Graphics Processing
Unit (GPU); the first working state includes a first swap
interval; and, the second working state includes a second
swap interval. In one example, the control of a second com-
ponent is further adjusted automatically based on the infor-
mation obtained from the plurality of sensors to move the
second component from a third working state to a fourth
working state. In one example, the first component is a heat
source of the data processing system and the second compo-
nent is a cooling source of the data processing system. In one
example, the control level is determined further based on one
or more user preferences. In one example, one of the sensors
includes a software module (e.g., an operating system’s ker-
nel) determining a processor load of the data processing sys-
tem.

In one aspect of the present invention, a method to operate
a data processing system includes: determining a subset of
control settings from a plurality of control settings of a plu-
rality of components of the data processing system based on
information obtained from a plurality of sensors (e.g., a tem-
perature sensor, atachometer, a software module determining
a load of a processor), each of which determines an aspect of
a working condition of the data processing system; and
adjusting the subset of control settings to change working
states of corresponding components of the data processing
system to balance requirements in performance and in at least
one of thermal constraint and power consumption. In one
example, the plurality of components include heat sources
(e.g., aCentral Processing Unit (CPU), a Graphics Processing
Unit (GPU), a hard drive, an optical drive, an Integrated
Circuit (IC) bridge chip) of the data processing system and
cooling sources of the data processing system. In one
example, an amount of cooling change is determined based
on the information obtained from the plurality of sensors;
and, the subset of control settings are adjusted to effect the
amount of cooling change. In one example, the amount of
cooling change is determined according to a fuzzy logic; and,
determining the subset of control settings includes determin-
ing a prioritized list of the plurality of control settings. In one
example, the prioritized list is determined at least partially
based on one or more user preferences. In one example, the
amount of cooling change is parceled out to the subset of
control settings. In one example, a first state of the data
processing system is determined from the information
obtained from the plurality of sensors; and, the subset of
control settings is deter mined from a decision to move the
data processing system from the first state to a second state.

In one aspect of the present invention, a method to operate
a cooling fan of a data processing system includes: adjusting
the cooling fan from running at a first speed to running at a
second speed in response to a temperature sensor measure-
ment and a user preference. In one example, it is further
verified that the cooling fan is running at the second speed
(e.g., using tachometer information obtained from a fan con-
troller for the cooling fan). In one example, a duty cycle of the
cooling fan is adjusted to run the cooling fan from the first
speed to the second speed. In one example, one or more
temperature measurements are determined; and the second
speed for the cooling fan is determined based at least partially
on the one or more temperature measurements. In one
example, the one or more temperature measurements are
obtained from one or more temperature sensors instrumented
in the data, processing system; and, the one or more tempera-
ture measurements indicate temperatures of at least one of: a)
a microprocessor of the data processing system; b) a graphics
chip of the data processing system; and ¢) a memory chip of

20

25

40

45

55

4

the data processing system. In one example, the microproces-
sor of the data processing system determines the second
speed. In one example, the second speed is determined further
based on at least one of’ a user preference stored in a machine
readable medium of the data processing system; and, a com-
putation load level on the data processing system (e.g., the
load level is low because the processor is idling and the
temperature level is low and a user preference has been set by
a user such that in this state the fan’s speed is reduced to
reduce noise and power consumption).

In one aspect of the present invention, a method to operate
a processor of a data processing system includes: shifting a
power supply of the processor from a first voltage to a second
voltage without resetting the processor. In one example, a
frequency of a clock of the data processing system is slewed
(changed slowly) to transit a clock of the processor from a
first frequency to a second frequency (e.g., by instructing a
clock chip to use anew frequency multiplier). In one example,
the processor continues to execute instructions while the fre-
quency of the clock is slewed and while the power supply is
shifted from the first voltage to the second voltage. In one
example, the power supply is maintained at one of the firstand
second voltages while the frequency of the dock is slewed;
and, the clock of'the processor is maintained at one of the first
and second frequencies while the power supply is shifted
from the first voltage to the second voltage. In one example,
the first frequency is higher than the second frequency; the
first voltage is higher than the second voltage; and, the power
supply is shifted from the first voltage to the second voltage
after the clock of the processor transits from the first fre-
quency to the second frequency. In another example, the first
frequency is lower than the second frequency; the first voltage
is lower than the second voltage; and, the power supply is
shifted from the first voltage to the second voltage before the
clock of the processor transits from the first frequency to the
second frequency. In one example, a frequency multiplier of
the processor is adjusted to switch a clock of the processor
from a first frequency to a second frequency. In one example,
the processor is not reset during switching from the first
frequency to the second frequency.

The present invention includes apparatuses which perform
these methods, including data processing systems which per-
form these methods, and computer readable media which
when executed on data processing systems cause the systems
to perform these methods.

Other features of the present invention will be apparent
from the accompanying drawings and from the detailed
description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings in
which like references indicate similar elements.

FIG. 1 shows ablock diagram example of a data processing
system which may be used with the present invention.

FIG. 2 shows a data processing system according to one
embodiment of the present invention.

FIG. 3 is a simplified block diagram illustrating heat
sources and cooling sources of an exemplary data processing
system having power and temperature management accord-
ing to one embodiment of the present invention.

FIG. 4 is a simplified block diagram illustrating a data
processing system depicted partitioned into thermal zones for
power and temperature management according to one
embodiment of the present invention.



US 9,317,090 B2

5

FIG. 5 illustrates operational states for system level power
management according to one embodiment of the present
invention.

FIG. 6 illustrates operational states for processor and/or
system power management according to one embodiment of
the present invention.

FIG. 7 illustrates transitions from one run state to another
run state according to one embodiment of the present inven-
tion.

FIG. 8 illustrates a detailed block diagram representation
of'a data processing system with active power and tempera-
ture management according to one embodiment of the present
invention.

FIG. 9 shows a software module diagram which shows
software to manage the operation state of a data processing
system according to one embodiment of the present inven-
tion.

FIG. 10 illustrates an example of a method to determine
actions to be performed using fuzzy logic in operating a data
processing system according to one embodiment of the
present invention.

FIGS. 11 and 12 illustrate an example defuzzification
method to merge different actions as one quantified action to
operate a data processing system according to one embodi-
ment of the present invention.

FIG. 13 shows a software module diagram which shows
software to manage the operation state of a data processing
system according to one embodiment of the present inven-
tion.

FIGS. 14-16 show methods to operate a data processing
system according to embodiments of the present invention.

FIG. 17 illustrates a method to parcel out cooling changes
to a number of controls according to one embodiment of the
present invention.

FIG. 18 illustrates an example of a state diagram which
shows a way to operate a data processing system according to
one embodiment of the present invention.

DETAILED DESCRIPTION

The following description and drawings are illustrative of
the invention and are not to be construed as limiting the
invention. Numerous specific details are described to provide
a thorough understanding of the present invention. However,
in certain instances, well known or conventional details are
not described in order to avoid obscuring the description of
the present invention. References to one or an embodiment in
the present disclosure are not necessarily references to the
same embodiment; and, such references mean at least one.

As the performance of data processing systems continues
to increase, so do power and cooling requirements. A fan and
heat sink may not be adequate for such high performance data
processing systems. To meet the challenge of combined con-
flicting design goals (e.g., computation performance, power
usage, cooling, acoustic noise, and others), at least one
embodiment of the present invention seeks to manage the
working states of various components of a data processing
system according to sensed information (e.g., one or more
temperature sensors and performance sensors and fan speed
sensors). Since hardware-based solutions have pre-deter-
mined flexibility, at least one embodiment of the present
invention utilizes the processing power of the data processing
system to provide software-based management solutions
(e.g., software in a kernel of an operating system).

In the present document, a working state of a component
(e.g. microprocessor or a fan) is a state in which the compo-
nent works to provides the functionality of the component at

20

25

35

40

45

6

a specific level of cost (e.g., the consumption of power usage,
the generation of noise or heat, or other factors). A working
state does not normally include the state in which the com-
ponent does not work to provide its functionality for the
system.

One embodiment of the present invention involves power
and thermal management strategies to meet the combined
challenge of high performance, low power consumption, low
noise and tight thermal constraints. In one embodiment,
power and temperature in a computer are actively managed so
that the computer can go faster, run quieter with extended
battery life, and avoid running too hot, as the computation
speeds increase and the enclosures of computers continue to
push the limits of engineering.

In one embodiment of the present invention, a computer
system is instrumented with one or more sensors; and, at least
one component of the system has a number of different work-
ing states. For example, different working states have differ-
ent power consumption levels and performance levels (e.g.,
processor speeds measured in megahertz or processing opera-
tions per second, etc.), which are actively managed to meet
conflicting goals, such as high performance and low power
consumption, subject to thermal constraints (e.g., the interior
of the computer enclosure should not or cannot exceed a
certain temperature which may damage certain components
in the enclosure). Managing thermal output and finessing
cooling efforts can help some machines avoid the need for
fans, while allowing other machines to run fans more quietly.
With the help of the information collected from the sensors,
the computation performance, user preferences and environ-
mental requirements can be balanced to reach a best mix for
a particular usage of the system.

In one embodiment of the present invention, sensors are
instrumented (e.g., in the hot spots for measuring tempera-
ture); controls are constructed to gracefully adjust the work-
ing states (e.g., through the adjustment of frequencies and
voltages) for tradeoff in performance, power consumption,
heat generation and heat removal; and, a thermal manager is
provided to monitor and control one or more thermal zones,
according to the constraints of system and user preferences,
which define the priorities of conflicting goals.

In one embodiment of the present invention, temperature
sensors are instrumented so that the temperatures of hot spots
can be periodically polled. The temperature sensors can be
implemented as thermal diodes on Integrated Circuit (IC)
chips (e.g., microprocessors, graphics chips, microcontrol-
lers, and others). Further, tachometers are instrumented to
obtain the feedback about the working states of fans.

In one embodiment of the present invention, fine-grained
control of frequencies and voltages for a data processing
system is added in an architecture-independent way to man-
age power consumption and heat generation. For example,
Central Processing Unit (CPU) voltage and frequency control
are provided to allow multiple CPU frequency and voltage
states with fine-grained control beyond just high or low; and
cooling fans have speed control beyond just on or off.

In one embodiment of the present invention, software
device drivers dynamically tweak power and performance.
For example, a CPU software driver manages CPU working
states (e.g., speed, frequency, voltage) based on computation
load, sensor measurements (e.g., CPU temperatures and CPU
load levels), and various preferences and priorities (e.g., user
preferences with respect to fan noise or other noise or battery
life). Device drivers for other controls use a similar approach
to select the working state based on the required work load
and various constraints.



US 9,317,090 B2

7

In one embodiment of the present invention, a there al
manager software module controls the power consumption
level of various components through the software device driv-
ers. For example, the software thermal manager may monitor
and control physical (e.g. temperature) and logical (e.g. CPU
load) sensors, optimize for user-center or design-center pri-
orities, such as performance, heat, battery life, and noise,
force drivers into lower power states to minimize power con-
sumption and/or heat production, and remove heat with mini-
mal noise. Further, the thermal manager may monitor and
control multiple independent zones.

It is vastly cheaper to reject a faulty part during a factory
burn in process (before a customer receives the part) than to
handle a customer return. After a design is instrumented, bad
parts can be detected early during the manufacture of or
testing of the system, using diagnostics tools. For example,
when a computer is instrumented with temperature sensors,
misapplied heatsinks may be detected for correction, remov-
ing one of the most costly manufacturing defects.

Many of the methods of the present invention may be
performed with a digital processing system, such as a con-
ventional, general-purpose computer system. Special pur-
pose computers, which are designed or programmed to per-
form only one function, may also be used.

FIG. 1 shows one example of a typical computer system
which may be used with the present invention. Note that while
FIG. 1 illustrates various components of a computer system,
it is not intended to represent any particular architecture or
manner of interconnecting the components as such details are
not germane to the present invention. It will also be appreci-
ated that network computers and other data processing sys-
tems which have fewer components or perhaps more compo-
nents may also be used with the present invention. The
computer system of FIG. 1 may, for example, be a Macintosh
computer from Apple Inc.

As shown in FIG. 1, the computer system 101, which is a
form of a data processing system, includes a bus 102 which is
coupled to a microprocessor 103 and a ROM 107 and volatile
RAM 105 and a non-volatile memory 106. The microproces-
sor 103, which may be, for example, a G3 or G4 micropro-
cessor from Motorola, Inc, or IBM or a G5 microprocessor
from IBM is coupled to cache memory 104 as shown in the
example of FIG. 1. The bus 102 interconnects these various
components together and also interconnects these compo-
nents 103, 107, 105, and 106 to a display controller and
display device 108 and to peripheral devices such as input/
output (I/0) devices which may be mice, keyboards,
modems, network interfaces, printers, scanners, video cam-
eras and other devices which are well known in the art. Typi-
cally, the input/output devices 110 are coupled to the system
through input/output controllers 109. The volatile RAM 105
is typically implemented as dynamic RAM (DRAM) which
requires power continually in order to refresh or maintain the
data in the memory. The non-volatile memory 106 is typically
amagnetic hard drive or a magnetic optical drive or an optical
drive ora DVD RAM or other type of memory systems which
maintain data even after power is removed from the system.
Typically, the non-volatile memory will also be a random
access memory although this is not required. While FIG. 1
shows that the non-volatile memory is a local device coupled
directly to the rest of the components in the data processing
system, it will be appreciated that the present invention may
utilize a non-volatile memory which is remote from the sys-
tem, such as a network storage device which is coupled to the
data processing system through a network interface such as a
modem or Ethernet interface. The bus 102 may include one or
more buses connected to each other through various bridges,

10

20

25

30

35

40

45

50

55

60

65

8

controllers and/or adapters as is well known in the art. In one
embodiment the I/O controller 109 includes a USB (Univer-
sal Serial Bus) adapter for controlling USB peripherals, and/
or an IEEE-1394 bus adapter for controlling IEEE-1394
peripherals.

Sensors 112 are coupled to controller 109 to provide infor-
mation about the operating environment condition of the
components of the data processing system. For example, sen-
sors 112 may include temperature sensors for determining the
temperatures at a plurality of locations in the data processing
system, such as the temperatures of microprocessor 103,
volatile RAM 104, a hard drive and an optical (e.g.,
CD/DVD) drive; sensors 112 may further include a fan
tachometer for determining the speed of a cooling fan, a light
sensor for determining the amount of required backlight; a
sensor to determine whether a display of a laptop is opened or
closed and others. Although FIG. 1 illustrates a configuration
in which sensors 112 are coupled to controller 109, it is
understood that sensors may also be integrated into compo-
nents (e.g., microprocessor 103). Further, software sensors
like kernel load factor are also used in at least some embodi-
ments of the present invention.

It will be apparent from this description that aspects of the
present invention may be embodied, at least in part, in soft-
ware. Thatis, the techniques may be carried outin a computer
system or other data processing system in response to its
processor, such as a microprocessor, executing sequences of
instructions contained in a memory, such as ROM 107, vola-
tile RAM 105, non-volatile memory 106, cache 104 or a
remote storage device or a combination of memory devices.
In various embodiments, hardwired circuitry may be used in
combination with software instructions to implement the
present invention. Thus, the techniques are not limited to any
specific combination of hardware circuitry and software nor
to any particular source for the instructions executed by the
data processing system. In addition, throughout this descrip-
tion, various functions and operations are described as being
performed by or caused by software code to simplify descrip-
tion. However, those skilled in the art will recognize what is
meant by such expressions is that the functions result from
execution of the code by a processor, such as the micropro-
cessor 103.

A machine readable medium can be used to store software
and data which when executed by a data processing system
causes the system to perform various methods of the present
invention. This executable software and data may be stored in
various places including for example ROM 107, volatile
RAM 105, non-volatile memory 106 and/or cache 104 as
shown in FIG. 1. Portions of this software and/or data may be
stored in any one or more of these storage devices.

Thus, a machine readable medium includes any mecha-
nism that provides (i.e., stores and/or transmits) information
in a form accessible by a machine (e.g., a computer, network
device, personal digital assistant, manufacturing tool, any
device with a set of one or more processors, etc.). For
example, a machine readable medium includes recordable/
non-recordable media (e.g., read only memory (ROM); ran-
dom access memory (RAM); magnetic disk storage media;
optical storage media; flash memory devices; etc.), as well as
electrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.); etc.

FIG. 2 shows a data processing system according to one
embodiment of the present invention. In FIG. 2, the data
processing system includes one or more processors 201 (e.g.,
a Graphics Processing Unit (GPU) and one or more Central
Processing Units (CPU)), devices 221-229 (e.g., cooling fan,



US 9,317,090 B2

9

battery charging system, AC adapter) and machine readable
media 209 (e.g., RAM chips, ROM chips, hard drive, optical
drive). The data processing system may include communica-
tion links to one or more devices outside housing 200. For
example, the data processing system may be connected to a
network or peripheral devices (221), such as a monitor, a
keyboard, a cursor controlling device (e.g., mouse, a track
ball, or a touch screen, or a touch pad), a printer, a storage
device, or others. Although FIG. 2 shows that machine read-
able media 209 are inside housing 200, it is understood that a
portion of the machine readable media may be outside hous-
ing 200 (e.g., connected through an IEEE 1394 bus or a USB
bus, or a network connection). Further, some of the peripheral
devices listed above as examples of devices 221 may be
integrated inside housing 200. For example, a touch pad, an
LCD display panel and a keyboard can be integrated within
housing 200 (e.g., on a notebook computer).

Machine readable media 209 have program instructions
and data for operating system 233 (e.g., Mac OS X)), applica-
tion programs 231 (e.g., a word processing program), and
operating manager 235 for managing the states of the com-
ponents of the system. Note that operating manager 235 can
be apart of operating system 233. Sensors 211-219 are instru-
mented within housing 200 of the data processing system to
obtain information about the environmental conditions of
various components of the data processing system, such as
the temperature of the processors (201), the fan speed of a
cooling fan, the lid position (e.g., open or closed). Some of the
sensors can also be software modules that determine the
computation loads for the processors. Operating manager
235, when executed on at least one of the processors (201),
causes the processing of the information obtained from sen-
sors 211-219 and the adjustment of the working states of the
processors (201) and the devices (e.g., 221-229) to provide
trade-off between performance and power usage while main-
tain proper thermal constraints to avoid damage or loss of
data.

Because software can crash, a safety thermal cutoff
remains independent of the operating system and is tied
directly to Power Management Unit (PMU 205) which
includes a hardware only portion which is not effected by a
software crash. When a sensor (e.g., 207) detects a tempera-
ture that exceeds a safety threshold, hardware-based safety
trigger 203 signals PMU for proper action. PMU 205 may
force a shutdown of the data processing system to prevent
damage when an extreme thermal condition is detected. PMU
205 notifies processors 201 about the safety threshold; and, a
software module may then notify the user that the safety
threshold is being approached, if one of processors 201 is
responsive to PMU. If none of processors 201 is responding to
the safety alert or if its response is inadequate to reduce the
temperature, PMU 205 takes actions to power off the data
processing system. Note that sensor 207 may be different and
separate from sensors 211-219; alternatively, sensor 207 may
be part of sensors 211-219 as shared hardware.

FIG. 3 is a simplified block diagram illustrating heat
sources and cooling sources of an exemplary data processing
system having power and temperature management accord-
ing to one embodiment of the present invention. In FIG. 3,
data processing system 300 has power and temperature man-
agement according to one embodiment of the present inven-
tion. System 300 includes power manager 301 (e.g., a soft-
ware program running as a portion of the operating system on
data processing system 300), heat sources 311-317 (e.g., Cen-
tral Processing Unit (CPU), Graphics Processing Unit (GPU),
memory chips, hard drive, optical drive, backlight, battery
charging system, system core logic and others) and cooling

20

30

40

45

55

10

sources 321-324 (e.g., cooling fans, heat pipes and heat sinks)
located within housing 300 of the data processing system.
The data processing system is instrumented with sensors
331-335 (e.g., temperature sensors, tachometers, light sen-
sors, noise sensor and others) within housing 300.

In one embodiment of the present invention, power man-
ager 301 is physically and/or logically coupled to heat
sources 311-317, cooling sources 321-324 and sensors 331-
335. For example, power manager 301 can be partially a
software program running on the data processing system,
using the processing power and storage capacities provided
by the heat sources, and partially hardware providing control
signals to the heating sources and cooling sources to balance
the performance and power consumption and limit the tem-
peratures monitored by the sensors. Some of sensors 331-335
may be disposed proximate to some of heat sources 311-317,
with some of cooling sources 321-324 being disposed so as to
operatively coupled to the heat sources to remove heat from
the heat sources.

FIG. 4 is a simplified block diagram illustrating a data
processing system depicted partitioned into thermal zones for
power and temperature management according to one
embodiment of the present invention. In FIG. 4, the data
processing system is thermally divided into a plurality of
zones (e.g., zones 401-404). The temperature of these thermal
zones can be individually controlled via controls (e.g., CPU
controller, fan controller, hard drive controller) to the heat
sources and cooling sources disposed within each thermal
zone using the information from the sensors in the corre-
sponding zone.

In one embodiment of the present invention, the data pro-
cessing system is enclosed within multiple isolated thermal
zones (MITZ). In the present application, a thermal zone is a
volume of space containing components that have strong
thermal interaction. For example, in a thermal zone, the heat
from one device may raise significantly the temperature of
another; the devices may share a common cooling system or
a common temperature sensor. One or more temperatures
within one zone are sensed for thermal management in that
zone.

It is possible that one zone in a system requires software
management, and another does not. For example, a power
supply could control a fan in a first zone, with the CPU and
another fan in a second zone. In this example, cooling the
power supply may very well cool the rest of the zone
adequately (perhaps even over-cooling some components).
Since power consumption relates to heat in the power supply,
it might be possible that meeting the cooling requirements of
the power supply is guaranteed to cool all other devices in its
thermal zone. In this case, the power supply zone would
require no active management. At the same time, the CPU
zone would need sensors and active thermal management.

FIG. 5 illustrates operational states for system level power
management according to one embodiment of the present
invention. There are four basic states in the system level
power state diagram. These states are Off 507, Run 501, Idle
509 and Sleep 503. Run 501 includes a range of working
states with different power and performance levels.

Off 507 represents a state when all power plane for the
system is turned of with the exception of those power planes
necessary to run the power system (and one or more periph-
erals that can be operated in an autonomous mode).

Idle 509 represents a state when the system is idling. Cache
coherency is maintained when in Idle 509. All clocks are
running and the system can return to running code within a
few nanoseconds. When all CPUs stop computing, the system
enters (519) from Run 501 into Idle 509, such as when the last



US 9,317,090 B2

11

active processor of the system is stopped in the Nap state 603
and is dynamically switched between the Nap state 603 and
the Doze state 607 for snoop cycles to complete. The North
Bridge can control the switching between the Nap state 603
and the Doze state 607, which will be described below with
FIG. 6 in detail. Any processor interrupt returns (519) the
system from Idle 509 to Run 501.

Sleep 503 represents a state when the system is shutdown
with various states preserved for instance recovery (513) to
Run 501. In one embodiment, the states of the North Bridge,
RAM and South Bridge are preserved to provide the appear-
ance of instant-on/always-available. All processors are pow-
ered off after their caches are flushed and their states pre-
served in RAM for the system to enter (513) from Run 501
into Sleep 503. Other devices, such as the devices in PCI slots
(or PCMCIA slots) are also powered off after preserving their
state in RAM. All clocks it the system are stopped except for
the one for real-time clock function.

Run 501 represents a state when a least one processor of the
system is running. If the system has multiple processors, the
individual processors may move in and out of their respective
processor power states (e.g., Doze 607, Nap 603, Sleep 605,
Off 609 in FIG. 6) in a fully independent manner. While in
Run 501 state, the processors can move together between
different performance levels. The operating system sets the
policies for when to shift performance levels and when to
power manage individual CPUs. For example, if there are
threads waiting to be scheduled, the system is in Run 501 state
and at least one CPU is running and executing the threads.
When the scheduler of the operating system runs out of
threads, the system transitions from Run 501 to Idle 509.

There are multiple power and performance levels associ-
ated with Run 501, in which the system moves (511) among
them as load and other constraints dictate. In one embodiment
of the present invention, the processor continues executing
instructions while shifting in performance levels, remaining
in Run 501 but shifting between different working states with
different power consumption levels and performance levels.
For example, when more performance is needed, the CPU
voltage and frequency may be increased to trade increased
power consumption for high performance. When full perfor-
mance is not needed and/or cooling down is required, the
CPU voltage and frequency may be decreased to trade per-
formance for reduction in power consumption, which helps
cooling the processor(s) down.

In one embodiment of the present invention, a device is
placed into a working state that uses as only much power as is
required to perform a task. The power consumption for a
device is scaled to match the work being requested. For
example, the speed of a fan is adjusted to keep the temperature
within the allowable range while using less power and pro-
ducing less noise than when the fan is at the full speed. The fan
is controlled to run only as fast as it needs to, and no faster.
Sensors instrumented in the system are used to gather the
information; and, the data processing system processes the
information to decide how to control the devices.

In a given system implementation, there are different
devices (e.g., CPU, hard drive, optical drive, graphics chip,
power supply, memory chip, core logic) that may reach their
thermal maximums (maximum thermal thresholds). If a
device may be above its allowable temperature (to become
overheated) under certain operating condition, the device
may be included in a thermal management algorithm; and, a
temperature sensor can be instrumented for detecting the
current temperature of the device. If the enclosure and airflow
somehow guarantees that a device will stay within its speci-

10

15

20

25

30

35

40

45

50

55

60

65

12

fications (including noise), temperature sensing of that device
is not required; and, that device may be included only for
power management.

There also might be a case where the temperature of one
device is sensed indirectly via its effect on another device. For
example, a design might have the hard drives preheating the
air that flows over the CPU. If the algorithm for protecting the
CPU always turns on the fan before the hard drives overheat,
it is not necessary to sense hard drive temperature directly.

In one embodiment of the present invention, device man-
agement includes using sensors for the devices and imple-
menting software drivers that controls the operations of the
devices according to the work being requested. In one
embodiment, sensors include thermistors, hard drive tem-
peratures, kernel loads, and more. Controls are provided to
vary fan speeds, backlight brightness, hard drive speeds, to
power devices off, to put a CPU in a different working state,
and to throttle thread scheduling.

Many of the devices of a computer (e.g., CPUs, GPU, hard
drives, optical drives, backlight, charging system, etc.) have
multiple power states, which can be used for active power
management, such as varying spindle speed of hard drives.

FIG. 6 illustrates operational states for processor and/or
system power management according to one embodiment of
the present invention. In the Run state 601, all processor units
are active. Dynamic clock stopping to individual functional
units is allowed, but are invisible to software. Clocks are
automatically restored to functional units immediately upon
detection of any instruction to be dispatched for that func-
tional unit.

In the Doze state 607, all execution units are stopped. All
processor caches and bus interface logic necessary to main-
tain cache coherency are active.

In the Nap state 603, all execution units are stopped, along
with all caches and bus interface logic. The system can bring
(621) the processor back to the Doze state 607 by de-asserting
asignal (e.g., QAck). This is done when the system needs the
processor to perform cache coherency operations.

Inthe Sleep state 605, all execution units are stopped, while
the processor state is maintained. Before entering (619) the
Sleep state 605, all processor caches are flushed, as a sleeping
processor does not perform any cache coherence operation. In
systems with multi-drop bus topologies (60x, MaxBus),
sleeping processors do not respond to deassertion (e.g.,
QAck). Systems with point-to-point interconnect topologies
(e.g., ApplePI) uses per-processor deassertion signals, but not
to a sleeping processor.

In the Off state 609, core power is removed from the pro-
cessor. The Off state 609 is typically used in multiprocessor
systems. In one embodiment, before a processor enters the
Power Off state, it sets its PowerDownEnabled bit inside the
core logic. Oncethe core logic asserts deassertion signal (e.g.,
QAck) to put a processor into the Sleep state 605, the core
logic checks the PowerDownEnabled bit. If the bit is set, the
processor interface is then put into an appropriate condition
for powering down the processor. An interrupt is generated to
signal the system that the processor is ready to have its power
removed. A live processor receives the interrupt and performs
the appropriate actions to remove power from the sleeping
CPU, moving (615) it into the Off state 609.

When software determines that it again needs the processor
that is in the Off state 609, it performs the appropriate actions
to reapply power to the CPU and reset it, returning (613) it to
the Run state 601.

In a single processor system, the CPU may avoid the Sleep
state 605 and target the Nap state 607 to avoid the penalty
associated with cache flushing. In a multi-processor system,



US 9,317,090 B2

13

every processor except the last active processor uses either the
Doze state 607 or the Sleep state 605. These two states impose
no penalty for performing snoop operations. The last active
processor will use Nap 607 in a manner similar to the single
processor. The system enters the Idle state 509 when the last
active (or the only) processor enters the Nap state 603.

One embodiment of the present invention moves the pro-
cessor from performance level to performance level by
changing frequency and power voltage while staying within
the Run state 601. Each performance level is a different
combination of CPU core frequency, CPU bus frequency, and
CPU core voltage that defines both a computing performance
level and a power consumption level. Each performance level
representing a working state of the CPU.

The number of performance levels implemented in a sys-
tem depends upon a variety of factors. For example, some
CPUs may only support two operating points, limiting the
system implementation to Run 0 and Run 1. A well-managed
portable design may implement Run 0 for minimum power,
Run 1 for specific functionality level such as DVD playback,
and Run 2 for the clock frequency for the portable system. A
high performance desktop may implement Run 0 for power
and thermal savings, Run 1 at 90% of maximum dock fre-
quency for most operations, and Run 2 at maximum power.
One example of different performance levels is illustrated
below.

Run 0: This is the lowest power and performance level
supported by the system. The processor’s Doze mode entered
from Run 0 may be different than that used at the other
performance levels. In particular, a large portion of the CPU
may be powered at a lower voltage than that required by the
snoop logic, saving significant leakage power. Run 0 can be
the state at which the system starts executing code after a
Power-On or Restart event.

Run 1 ... n: These states have incremental power and
performance levels above the next lower level one. These
states differ solely by CPU core voltage and frequency, which
sets leakage power, operating power and CPU performance.

Run n+1: This state is special in requiring no transitions out
of'this state. Some systems may achieve higher performance
if the CPU does not leave the Run state 601. Since the surge
currents for transition in and out of Run can be significant,
transitions can cause the maximum droop on the power sup-
ply rail. By avoiding these droops at the highest performance
point, the maximum performance can be achieved. However,
by not allowing the CPU to Nap (603) or Sleep (605), signifi-
cant additional power will be used.

In one embodiment, with the processor environment set to
a specific performance level, the processors can indepen-
dently transition back and forth between their different power
saving states (Run 601, Doze 607, Nap 603, Sleep 605, and
Off 609). The system enters automatically from Run 501 into
Idle 509 whenever there are no processors in the Run state
601.

Some operating systems (e.g., Mac OS X)) have the capa-
bilities for monitoring the activity level of the CPU(s). In one
embodiment, after determining the processing load currently
required by the CPU, the CPU can determine if it is above a
certain activity level. Based on the processing load level, the
management system can initiate a shift upward or downward
in performance.

Likewise, if the CPU determines that it doesn’t need all the
performance that is currently available, it can shift downward
in performance in order to save significant power. Since the
CPU continues to operate throughout the process of shifting,
no significant latency is incurred as a result of the perfor-
mance level change.

10

15

20

25

30

40

45

55

60

65

14

Inone embodiment, the algorithms used to determine when
to shift up and down in performance are contained in system
software. The software makes the decisions about when to
change the performance level. In one embodiment of the
present invention, the software relies not only on CPU load,
but also on system thermal conditions, user preferences and
others, to decide whether to move to a higher or lower per-
formance level.

In one embodiment of the present invention, the CPU con-
tinues executing instructions throughout the performance
transition process without CPU reset.

FIG. 7 illustrates transitions from one run state to another
run state according to one embodiment of the present inven-
tion. In one embodiment of the present invention, the transi-
tions between the different CPU run levels are accomplished
using a combination of frequency and voltage control. To
increase performance (e.g., to move from Run 707 to Run
705), the CPU core voltage is first increased (701) to the level
appropriate for Run 705. The CPU power supply moves the
voltage between the two voltage points at a rate slow enough
such that it does not induce errors in the running CPU. When
the voltage transition is complete, the CPU is currently oper-
ating at point 709 in FIG. 7; and, the CPU power supply may
signal the system with an interrupt, indicating that it is now
safe to increase frequency. At this point, the clock source
starts to transition to the new (faster) operating frequency.
The clock source slews (slowly changing) the frequency
between the two operating points (e.g., 709 and 705) slow
enough such that all the Phase Lock Loops (PLL) in the
system can track the clock without causing errors in the
running system.

Similarly, to decrease performance (e.g., to move from Run
705 to Run 707), the clock source is first instructed to move to
the new (slower) operating frequency. The clock source again
slews the frequency between the two operating points slow
enough such that all the PLLs in the system can track the dock
without causing errors in the running system.

Since the operation of slewing the frequency from point
705 to 709 takes a deterministic amount of time, it is possible
to have the CPU wait the appropriate delay and then infer that
it is operating at point 709. Alternatively, the clock chip can
generate an interrupt after achieving the new frequency.

Once point 709 is reached, the CPU core voltage is
decreased to the level appropriate for Run 707. The CPU
power supply moves the voltage between the two voltage
points at a rate slow enough such that it does not induce errors
in the running CPU. Since no further action needs to be taken,
the voltage transition may be left to complete unmonitored.

In a typical system, the different PLLs in the system have
certain inter-relationships. For example, each PLL associated
with the CPU may run at a frequency derived from a single,
common reference clock. Each of these PLLs also has its own
specified minimum and maximum operating frequencies.
The individual PLL operating minimum and maximum fre-
quencies imply that each PLL also has a specific minimum
and maximum reference frequency that it will accept. In order
for the system to work correctly, the reference clock must
obey all the individual reference clock minima and maxima.
In some cases, the PLL of a device (e.g., core logic) may be
reprogrammed during the frequency transition operation to
obey the clock minima and maxima of the device.

FIG. 8 illustrates a detailed block diagram representation
of a data processing system with active power and tempera-
ture management according to one embodiment of the present
invention. In FIG. 8, the data processing system contains
system core logic 801 (North Bridge), which interconnects
CPU 805 and RAM 809. I/O controller 803 (South Bridge)



US 9,317,090 B2

15

connects core logic 801 with hard drive 811 and optical drive
813 (e.g., CD ROM, DVD ROM, CD R, CD RW, DVDR, or
DVD RW) and other /O devices (e.g., keyboard, a cursor
control device, or others, not shown in FIG. 8). Some com-
ponents (e.g., CPU 805, GPU 807 and RAM 809) may have
elevated temperature after generating significant amount of
heat during operation. Some components (e.g., hard drive 811
and optical drive 813) consume more power at a high speed
and less power at a lower speed. Heat pipe 825 moves heat
from one location to anther to transfer heat; heat sink 823
absorbs heat to regulate temperature; and, under the control of
fan controller 845, variable speed fans 819 and 821 can work
at different speeds for tradeoff between the rate of cooling and
the associated cost (e.g., noise and power consumption). Sen-
sors 831 and 833 monitor the temperate of GPU 807 and CPU
805 for active management of the system according to
embodiments of the present invention.

FIG. 8 shows a particular configuration for the illustration
purpose. Itis understood that different configurations can also
be used with various methods of the present invention.

In one embodiment, CPU power 843 is controllable to
move the core voltage of CPU 805 from one point to another
for the shifting of power consumption level (e.g., along path
701 in FIG. 7); and, clock source 841 is controllable to slew
the core frequency of CPU 805 from one point to another for
the shifting of performance level (e.g., along path 703 in FIG.
7). When the CPU is working at a lower frequency, the CPU
voltage is reduced to save power and reduce heat generation.

In FIG. 8, sensor 831 measures the temperature of GPU
807, thus, GPU 807 and sensors 831 are in thermal zone 853.
CPU 805, fan 819 and sensor 833 are thermally coupled in
thermal zone 851. Fan 821 may cools power unit 817 and
other components sufficiently such that other components
may not need active thermal management.

Although the software-based thermal and power manage-
ment can manage the operations of the system according to
combined goals to achieve a best mix, software may crash.
Thus, a hardware-based failsafe mechanism is used in one
embodiment of the present invention as a backup. For
example, sensor 835 may trigger a safety alert when a safety
threshold for temperature is reached or exceeded. Note that
sensor 835 may be replaced by an output from sensor 833 or
831. Alternatively, sensor 835 may be a circuit which com-
bines the output of sensors 831 and 833 for safety trigger. In
one embodiment of the present invention, the temperature
sensors can trigger operations (e.g., force the fan to run at the
full speed or a shutdown of the system) to prevent thermal
runaway (overheating to cause damage), when the tempera-
ture is above a threshold. In one embodiment, the sensor
sends a signal to the power management unit (PMU 815)
when this happens; and, PMU 815 controls power unit 817 for
emergency powering off to prevent permanent damage.

In one embodiment of the present invention, software (e.g.,
a part of the operating system) has the responsibility for
keeping all components within their respective thermal speci-
fication. The hardware failsafe is intended to prevent a
crashed system from destroying itself. As such, the failsafe
threshold may be set above a device’s maximum operating
temperature, as long as it is still below the threshold above
which permanent damage may occur.

In one embodiment, PMU 815 implements a forced system
shutdown function. When a hardware failsafe trips (e.g., by
sensor 835), PMU 815 tries to determine if the CPU is active.
One method of determining if the CPU is dead is to use a
watchdog timer (e.g., in KeyLargo/K2) to determine whether
the CPU response to a signal within a specified time period set
for the timer. If the CPU is dead (e.g., not responding to the

20

30

35

40

45

60

16

signal before the timer expires) after the failsafe has tripped,
PMU 815 shuts off power to the system.

In one embodiment, when the failsafe triggers, the infor-
mation about the failsafe shutdown is recorded so that a user
can find out about the event at the next boot of the system. If
a machine refuses to boot because it detects a misapplied
heatsink, the LED emits a code to convey the nature of the
failure. Further, when the system cannot be sufficiently
cooled, and devices are set to slower operating speeds, the
user might be informed that the system’s performance is
suffering because of the heat.

Heatsinks (e.g., 823) generally provides a valuable time to
respond to non-responsive systems. Conversely, misapplied
heatsinks can lead to destruction ofa CPU in mere seconds. In
one embodiment, during boot time, PMU 815 has a thermal
trip watchdog timer that shuts off a non-responsive system
with a time period before an unsinked device melts down.

In one embodiment of the present invention, the boot ROM
code sets the thermal trip points in the thermal sensors for
devices that might sustain permanent damage if over a critical
temperature for more than a few seconds (e.g. CPUs).

In one embodiment of the present invention, software man-
ages a thermal zone (e.g., 851) by controlling one or more
fans (e.g., fan 819 or other “cooling” devices, such as CPU
805 for reduced heat generation) in that zone. The fan control
is in the form of speed control, and not simple on or off
operations. For example, a signal is sent to control the fan
speed by varying duty cycle.

In addition to telling the fan how fast to spin, the software
detects whether or not the fan has responded to reliably man-
age the thermal zone. For example, the software can used the
tachometer input from fan controllers to obtain this feedback.

In one embodiment of the present invention, the tachom-
eter feedback is to ensure that the fan begins spinning when
first turned on. Fans may run at speeds slower than those
required for spin-up. Some fan controllers start the fan at full
speed and then backs off. In one embodiment, a better algo-
rithm for spinning up a fan is to slowly increase the duty cycle
until the fan starts up, and then slowly back it down to the
actual desired fan speed (if slower than the startup speed).
Tachometer feedback can be used to implement this algo-
rithm.

In one embodiment of the present invention, a fan is con-
trolled by a fan curve, which describes the relationship
between the temperature values of one or more temperature
sensors and the speed of the fan. For example, one fan curve
specifies that for a given temperature the fan is to run a given
speed. In one embodiment, there is one fan curve to map each
senor to each fan for a given performance level; thus, the total
number of fan curves is:

(number of sensor and performance level combina-
tions)x(number of fans)

The manager select the maximum speed from the speeds
required by all sensors according to the fan curves at the
current performance level as the desired fan speed.

In one embodiment of the present invention, the fan curves
are determined based on temperature measurements taken at
different fan speeds and at different performance levels.

In one embodiment of the present invention, software con-
trols fan speed to manage system thermals. The goal of the
software is to run the fan, as slowly and quietly as possible
while maintaining device specification. Since a single ther-
mal zone may have multiple hot spots, the software runs the
fan at the slowest speed required to keep all hot spots in check,
even if it means that one device is cooled more than required
in order to keep another device within the specification.



US 9,317,090 B2

17

In one embodiment of the present invention, Active Ther-
mal Management software is implemented in the kernel of an
operating system. A thermal manager processes input data,
including sensed information (e.g., temperature, CPU pro-
cessing load, GPU processing load), detected conditions
(e.g., battery charging, lid closed, sleep mode) and user pref-
erences (e.g., prefer high graphics processing, prefer low
noise) to optimize and direct accordingly CPU and/or GPU
processing levels, battery charging periods, fan speeds and
drive performance. Thus, the management system integrates
the inputs from sensors, user preferences, current tasks and
other conditions like lid closed operation to determine the
optimum way to keep the temperature of the system within a
desired range by increasing the cooling or decreasing the heat
produced. In at least one embodiment, users of the data pro-
cessing system can manage their own thermal solutions
through the thermal management software modules imple-
mented on the data processing system (e.g., by setting the user
preferences).

FIG. 9 shows a software module diagram which shows
software to manage the operation state of a data processing
system according to one embodiment of the present inven-
tion. In one embodiment of the present invention, a thermal
management software system includes several modules,
including sensor driver 907, thermal manager 901, and con-
trol driver 903. Thermal manager 901 performs the central
decision-making. Sensor driver 907 communicates with
device driver 909 to obtain sensed information; and, control
driver 903 communicates with device driver 905 to adjust
working states of one or more components (e.g., CPU, GPU
or fan). In one embodiment of the present invention, device
information 911 from the device tree 913 and Boot ROM 915
are collected for the instantiation of sensor driver 907 and
control driver 903 during the initialization period.

In one embodiment of the present invention, the thermal
manager monitors and controls the internal temperatures of
the data processing system, on which the operating system is
running, to prevent uncomfortable or unsafe temperatures.
Certain parts, like the processor and graphics hardware, are
more prone to overheating than others. Other components,
like optical and hard drives, may fail due to excessive heat in
the system. In order to monitor the temperatures of particu-
larly hot components, the thermal manager (901) obtains
temperature information about them from sensor drivers
(e.g., 907). Based on the temperature information, the oper-
ating system instructs control drivers (e.g., 903) to take action
to mitigate temperature increases as necessary in a coherent
fashion.

In one embodiment of the present invention, thermal man-
ager 901 contains a set of global rules that dictate how to
manage the system: whether to manage more heavily, stay the
same, or manage less heavily. For example, a thermal man-
ager may contain a Cooling Decider to determine the amount
of cooling adjustment required based on the information
obtained from sensor driver 907, a priority decider to priori-
tize a list of controls according to user preferences 921, sys-
tem information 923, and a control decider to adjust the
controls according to the prioritized list of controls to achieve
the determined amount of cooling adjustment. For example,
the Cooling Decider takes sensor value data and calculates
how much it should turn the system cooling up or down.
Specific rules that represent additional criteria, such as user
preferences and environmental factors, are used to prioritize
the available controls for use in the determination of control
indices. The Priority Decider creates a sorted list of controls
ranked in the order they should be changed according to these
rules. The Cooling Decider passes the desirable cooling

10

15

20

25

30

35

40

45

50

55

60

65

18

change and any relevant information, such as the target ther-
mal zone in which the cooling change is to be implemented,
to a Control Decider, which implements the desirable cooling
change. The Control Decider takes the amount of cooling
determined by the Cooling Decider and parcels out those
changes to the controls in the order determined by the Priority
Decider. In one implementation, this decision-making hap-
pens at polled intervals.

In one embodiment of the present invention, thermal man-
ager 901 employs Fuzzy Logic and other data-driven algo-
rithms to manage system temperature. For example, the Cool-
ing Decider uses fuzzy logic principles and inference rules to
determine the amount of cooling change, instead of modeling
the system mathematically, in which the fuzzy logic model is
empirically derived and modified through testing or simula-
tion. An example of a rule is:

IF (temperature is hot) AND (temperature is increasing)
THEN (turn cooling up).

After a number of rules are evaluated, their results are
combined to generate a single result. Terms like (temperature
is very hot), (temperature is increasing) or (turn cooling up a
lot) can be defined for better precision in control.

For example, a Cooling Decider may use the following
rules.

1. IF (temperature is cold) THEN (turn cooling down)

2. IF (temperature is warm) THEN (do nothing)

3. IF (temperature is hot) THEN (turn cooling up)

FIG. 10 illustrates an example of a method to determine
actions to be performed using fuzzy logic in operating a data
processing system according to one embodiment of the
present invention. A sensed temperature may be classified
non-exclusively as cold, warm and hot. For example, if the
current temperature is a number of degrees below the desired
temperature, it can be classified mostly warm and a little cold.
In FIG. 10, membership functions 1001, 1003 and 1005
define the levels of truth for the classification of different
temperatures. For example, curve 1001 represents the level of
truth for different temperatures. When the different between
the current temperature and the target temperature, T-T,, is
between —10° and 0°, the truth value increases linearly as the
current temperature reduces (and decreases as the current
temperature increases). When the current temperature is 10°
below the target temperature, the truth value of being cold is
1.0; and, when the current temperature is above the target
temperature, the truth value of being cold is 0.0. Curve 1003
defines non-constant truth values of warm when the differ-
ence between the current temperature and the target tempera-
ture (IT-Tyl) is less than 10°; and, curve 1005 defines the
linear variation of truth values of hot when the current tem-
perature is within 10° above the target temperature. Thus, ifa
current temperature is 7.5°, the truth values for cold, warm
and hot are 0, 0.25 and 0.75 (1021, 1023 and 1025) respec-
tively. The above rules for the cooling decider then lead
(1011, 1013 and 1015) to the corresponding truth values O,
0.25 and 0.75 for the actions (turn cooling down), (do noth-
ing) and (turn cooling up) respectively, when the above infer-
ence rules are used.

Membership graphs may be of complex shapes, such as
Gaussian curves. Keeping them to triangles and trapezoids
makes the calculations much faster.

FIGS. 11 and 12 illustrate an example defuzzification
method to merge different actions as one quantified action to
operate a data processing system according to one embodi-
ment of the present invention.

To merge the different results, the Cooling Decider goes
through a process called “defuzzification” to get a single,
crisp result in the range of 20 units for the cooling, assuming



US 9,317,090 B2

19

the change of cooling is always limited within 20 units. Con-
sider an example in which the actions of (turn cooling down),
(do nothing) and (turn cooling up) have member functions
1111, 1113 and 1115 respectfully, as shown in FIG. 11. In
FIG. 11, when cooling is turned down by no more than 10
units, the truth value of (turn cooling down) increases linearly
as the unit of cooling decreases; when cooling is turned up by
no more than 10 units, the truth value of (turn cooling up)
increases linearly as the unit of cooling increases; and, when
the change in cooling (IACI) is less than 10 units, (Do noth-
ing) has non-constant truth value.

Note that the shapes, ranges and slopes of member func-
tions 1111, 113 and 1115 for (turn cooling down), (do noth-
ing) and (turn cooling up) are in general different from those
for cold, warm and hot.

A commonly used method for “defuzzification”, called the
Centroid algorithm, first clips each consequent (result) by the
degree of truth of its antecedent. Since (turn cooling down),
(do nothing) and (turn cooling up) have truth values 0, 0.25,
0.75 respectively, member functions 1111, 1113 and 1115 are
clipped to generate functions 1101, 1103 and 1105 respec-
tively.

Next, the clipped member functions are overlaid as in FIG.
12 to calculate an average point where there is an equal area
under the graph on each side of the average point. This is
analogous to finding the center of mass in physics and is
called the Centroid Method. Curve 1203 in FIG. 12 corre-
sponds to the portion of curve 1103 between points 1122 and
1125 in FIG. 11; and, curve 1205 corresponds to the portion
of curve 1105 beyond point 1126. The average point 1211 in
FIG. 12 is at 10.2 unit. Thus, the Cooling Decider reaches the
conclusion to turn up cooling for 10.2 units.

The priority decider and the control decider then determine
how to turn up cooling for 10.2 units.

There are at least two kinds of data that are taken into
account in deciding the priority ordering of controls: thermal
zone and control type. For example, a system might have two
fans: a CPU near one fan, and a GPU near the other. In this
example, there might be two thermal zones, one specifying
the CPU and its associated fan, and the other specifying the
GPU and its fan. However, the fans, CPU, and GPU are
different types of thermal controls: they create different side
effects when in modulating the temperatures. Therefore, they
are associated by type of control (e.g., fan, processor, etc).
Each type of control has certain known properties, depending
on the user’s preferences or current environmental factors.

The Priority Decider prioritizes the controls by type and
zone into a single priority queue for the Control Decider to
adjust. For example, the list can be determined by user pro-
files, like “quiet” and “high performance.” These profiles sort
the controls by type. Within a type, the controls can be
ordered by proximity to hot sensors: if a particular control is
closer to the hot sensor than another similarly-typed control,
it will have a higher priority. However, differently-typed con-
trols are sorted according to profiles, not zones.

In one embodiment of the present invention, the Priority
Decider is based on an expert system, which takes in dynamic
system information and applies it to a list of rules to determine
the priorities of the controls. The rules for the Priority Decider
include system environmental rules and user preference rules.
A level of priority indicates that the level of importance of the
work of the device. Examples of system environmental rules
include:

If intake temperature is high, decrease the fan’s priority

Ifbattery is charging and is above 90%, increase the battery

charger’s priority

If CPU load is low, decrease the CPU’s priority

10

15

20

25

30

35

40

45

50

55

60

65

20

If zone x is hot, use controls in zone x first

If graphics pipeline is busy, decrease the GPU’s priority

If DVD is playing, decrease the CPUs priority

If burning CD/DVD, decrease the CPU’s priority

If filesystem is busy, decrease the hard drive’s priority

If sensors are too hot, don’t burn CD/DVD

If CPU speed is too slow, can burn CD/DVD

Examples of user preference rules include:

If “quiet,” decrease the fan’s priority

If “high performance,” decrease the CPU’s priority

If “high performance,” decrease the GPU’s priority

The Control Decider adjusts the list of controls to achieve
the required cooling change determined by the Cooling
Decider, according to a list of controls ranked by the Priority
Decider in the order they should be changed. In one embodi-
ment, the cooling change that the Cooling Decider provides
can be considered as the quantity of total control index change
to be made, with 0 being no cooling change, positive repre-
senting more aggressive cooling, and negative representing
less aggressive cooling.

For example, if the Cooling Decider determines to increase
cooling for a number of units, the control with the lowest
priority is adjusted first (e.g., to reach the maximum cooling
capacity if necessary) to provide the required cooling. If the
required unit of cooling is not satisfied after the total cooling
capacity of the control with the lowest priority is exhausted,
the control with the next lowest priority is adjusted. Thus, the
list of controls is processed in the ascending order of priority
for adjustment until the required units of cooling is satisfied.

Similarly, if the Cooling Decider determines to decrease
cooling for a number of units, the control with the highest
priority is adjusted first (e.g., to reach the minimum cooling
capacity and maximum performance) to accommodate the
decrease of cooling. If an extra number of unit of cooling is
available for decreasing after the cooling provided by the
control with the highest priority reaches the minimum, the
control with the next highest priority is adjusted. Thus, the list
of controls is processed in the descending order of priority for
adjustment until the given units of cooling is decreased.

In one embodiment of the present invention, the number of
cooling units to be changed can be zero, with the changed
priorities of the controls. To reflect the changes in priorities,
the cooling units may be traded between controls of different
priorities to achieve better performance. For example, if high
priority control A is providing more cooling than low priority
control B, the high priority control A is adjusted for higher
performance but less cooling, while the low priority control B
is adjusted to provide more cooling to compensate for the
reduced cooling from control A.

In one embodiment of the present invention, the informa-
tion about sensors and controls in the system (e.g., type, zone,
and others), environmental parameters (e.g., high/low tem-
perature thresholds), membership functions and inference
rules required by the Cooling Decider, priority lists of con-
trols needed for various user-affected settings, and others are
collected (e.g., from device tree 913, Boot ROM 915) during
an initialization period (e.g., at startup) of the management
system.

FIG. 13 shows a software module diagram which shows
software to manage the operation state of a data processing
system according to one embodiment of the present inven-
tion. In one embodiment of the present invention, thermal
manager manages system temperature through making
simple decisions based on the temperature sensors and adjust-
ing the CPU and GPU performance accordingly. In one
embodiment, the thermal manager is a platform dependent
driver (e.g., platform monitor 1321) that responds to events



US 9,317,090 B2

21

generated by sensor drivers (e.g., in response to excessive
thermal loading), power management requests (e.g., from
power management 1313), or configuration changes from the
user to modify the behavior of the system (e.g., by adjusting
the working states of the components of the data processing
system through controls 1325, 1327 and 1329). The thermal
manager monitors the environmental factors (e.g., using sen-
sors 1323) and takes necessary action to prevent damage to
machine components or loss of user data.

In one embodiment of the present invention, state watcher
1311 allows a user to monitor sensors and observe the behav-
ior of the thermal manager. This tool may be used to report all
relevant data from the thermal management system, as well as
make runtime tweaks to parameters in the system. For
example, the user can see what the system would do if it were
at a certain temperature or a certain state and set thresholds
and polling periods for the individual sensors.

In one implementation, platform monitor 1321 implements
a state machine, which in response to the input, adjusts vari-
ous system parameters in order to adjust the level of cooling
needed for the computer system. The knowledge about the
temperature being managed and what constitutes too hot ver-
sus too cold are coded in the platform monitor. In one embodi-
ment of the present invention, the platform monitor deter-
mines the current state of the system from the information
obtained from the sensor drivers and adjusts the thermal con-
trols of the system to move the system from one state to
another, if the current state is not a desirable one. For
example, the states are determined from the information col-
lected from sensors (e.g., temperatures sensors), system con-
ditions (e.g., lid open or closed), and preferences (e.g.,
“quiet” or “high performance”). There may also be different
profiles for lid-closed, “quiet”, or other situations so that the
monitor actively manages the system to move between the
states in the current profile. The platform monitor is platform
specific and has detailed knowledge of the platform on which
it is running. Using this knowledge, it collects information
from sensors in the system and takes appropriate actions
based on the states of these sensors.

Sensor drivers provide environmental information about
the computer. An instance of a sensor driver represents a
specific environmental-sensing device, like a thermistor, an
ambient light sensor, or a software sensor like kernel load
factor. For example, temperature sensors provide temperature
information about the data processing system on which the
sensor drivers are running. A sensor driver gets information
about the sensor (e.g., thermal zone, type (such as tempera-
ture, light, battery, kernel load), thresholds, and others). Sen-
sor drivers can be polled to get the current values and may
support event notification to signal important threshold con-
ditions.

A sensor driver (e.g., 907 or 1323) may apply to any sensor
that detects one aspect of the state of the system. For example,
the user selecting “Reduced performance” in the Energy
Saver preference panel is sensor input. Whether the user has
open or closed the clamshell is sensed information about the
environment of the data processing system. Any input may
trigger a response that dictates a state change of the system;
and, the platform monitor is the centralized decision maker
for taking actions to adjust the state of the system.

In one embodiment, each sensor registers itself with the
manager (e.g., platform monitor 1321 or thermal manager
901). For some sensors, such as temperature sensors, the
manager sets a threshold that controls when the sensor driver
notifies the manager. For example, a temperature sensor may
be given an upper threshold and a lower threshold so that the
sensor driver notifies the manager whenever the sensed tem-

10

15

20

25

30

35

40

45

50

55

60

65

22

perature crosses one of those thresholds. The sensor may be a
smart one so that it triggers an interrupt when a threshold is
crossed. Alternatively, the sensor driver may simulate this
behavior by polling the sensor and only notifying the platform
monitor when a threshold is crossed.

Based on the current state of the system, the manager may
reset thresholds to control the behavior of the sensor. The
thresholds can be set to control the responsiveness of the
system and manage hysteresis. For example, when an upper
threshold for a temperature is crossed, the upper and lower
thresholds may be increased so that the current temperature is
within the updated thresholds. The manager notices the shift
in the temperate and takes actions to adjust heatremoval (e.g.,
increasing the speed of a fan) and/or heat generation (e.g.,
reducing the performance and power consumption level of
CPU or GPU) to bring the temperature back down, if tem-
perature is too high. Similarly, when the temperature crosses
the lower threshold, the upper and lower thresholds may be
decreased so that the current temperature is within the
updated thresholds.

In one embodiment of the present invention, a sensor driver
notifies the manager with a sensor value (e.g., scaled to the
range 0-100) when an interesting event occurs, or when the
manager polls the sensor. The sensor value is not necessarily
the same as the raw data from the sensor; the sensor driver can
take into account other prioritized information from the sen-
sor, e.g., how long a thermistor has read the temperature. For
example, the sensor driver can keep a history of its data and/or
values. However, hysteresis or historical data is not generally
required, since the manager can retain any data it needs.

Some sensors may be hardwired to cooling devices, like
fans, that are outside of the control of the Thermal Manager,
but still notify the system when a cooling change has
occurred.

Inone embodiment of the present invention, controlling the
fan speed is accomplished by utilizing the hardware capabili-
ties (e.g., using ADM1030 from Analog Devices). ADM1030
fan controller contains an on-chip thermistor, support for a
remote (off chip) thermistor, and is programmable to drive a
variable speed fan. In one embodiment of the present inven-
tion, a generic temperature sensor driver is responsible for
communicating sensor events to the platform monitor. In
order to perform specific tasks, the device drivers are
instructed to carry out device-dependent actions (e.g., reading
the temperature from an ADM1030). An instance of the
generic driver has a low threshold and a high threshold for
monitoring temperature, a specified polling period for peri-
odically polling the temperature information, and other
attributes, such as name, value, temperature zone, type of
sensor. The thresholds may be modified and be disabled (e.g.,
by setting to a predetermined value) or enabled during runt-
ime.

In one embodiment of the present invention, the generic
temperature sensor driver initializes itself and waits for the
manager to be loaded during start up. It then sends a message
to the manager telling it where it is. The manager then also
registers as a client of the sensor driver to establish commu-
nication. The sensor driver sends a message to the manager
when an interesting event occurs, such as a threshold that has
beenhit or exceeded, or when the manager polls the sensor for
the current value. In one embodiment of the present invention,
the generic temperature sensor driver is a generic liaison
driver. It obtains the actual value for the sensor by talking to
a specific device driver.

Control drivers are the actual effectors of the state change.
Examples of these include drivers that can change CPU mul-
tiplier, system bus speed, or GPU performance level. In one



US 9,317,090 B2

23

implementation, some of these controls are linked into the
manager (e.g., platform monitor).

In one embodiment of the present invention, an instance of
a control driver represents a device that is able to adjust its
working state for environmental variation, including devices
that are designed for removing heat, such as fans, or devices
that can adjust their performance to reduce heat generation.
Control drivers may be visualized as a dial for the output of
the device they’re controlling. In one implementation, a con-
trol driver accepts a value for the dial (e.g., indicating a
working state as a index value within 0-100, with higher
values representing most aggressive cooling and lower values
representing least aggressive cooling); and, the control driver
also supports reporting its current index value and informa-
tion about whether it is at the maximum or minimum control
level.

The devices that can have a corresponding control driver
include: CPU, GPU, fan, backlight, battery charging, hard
drive, optical drive, PCI card, and others. CPU and GPU can
be of a type of “performance hit” for which different working
states correspond to different tradeoff in performance and
heat generation (or power consumption); fan can be of a type
of “noisy” for which different working states correspond to
different tradeoff in heat removal (and noise) and power con-
sumption; backlight and battery charging can be of a type of
“user impact” for which different working states correspond
to different tradeoff in user experience impact and power
consumption.

The CPU clock is generated for some CPUs via an on-chip
PLL that selectively multiplies and divides the processor bus
clock. However, the CPU clock PLL configuration of many
microprocessors is only programmable during a reset cycle.
Thus, these CPU may be rebooted in order to change clock
speeds. The special reset cycle for changing clock may be
accomplished by programming a register in the memory con-
troller for state initialization and then sending a command to
the PMU for a reset.

The latency for switching the CPU multiplier is very high
when a complete reset of the CPU is performed. In such an
implementation, interrupts can be deferred for a period of
time until the CPU reset is complete. This high interrupt
latency can be evident to the end use in the form of audio drop
outs and/or pops. Thus, such a method for CPU speed switch
is generally not transparent without affecting the user expe-
rience. In one embodiment of the present invention, such an
approach for CPU multiplier shift is used primarily to cope
with excessive thermal stress.

To achieve a more transparent CPU speed change, the CPU
clock is altered through slewing (slowly changing) the bus
clock. Some microprocessors derive their clock from the
system bus clock using an on-chip PLL. In one embodiment
of'the present invention, the processor clock is changed, with-
out a reset, through slowly changing the processor bus clock
atarate slow enough to allow the on-chip PLL remain locked.
One technical challenge is that changing the bus clock has the
side effect of changing the rate at which the decrementer
register is modified. In one embodiment of the present inven-
tion, several hardware components are used to implement
CPU speed adjustment through slewing the bus clock, includ-
ing a programmable clock source (e.g., Cypress CY28512) to
support slewing and a circuitry in the core logic to handle the
time base drift problem. Some CPUs have a signal called
“TBEN” (Time Base ENable), which can be used to tempo-
rarily stop the processor from keeping track of time. Custom
logic inside the core logic modulates (changes) the TBEN
signal in response to monitoring the master clocks. As a

20

30

40

45

55

24

result, the CPU concept of time is updated at a constant rate,
even though the bus clock changes with time.

In one embodiment of the present invention, a chip (e.g.,
CY28512) is used to take in a clock signal, apply some
user-programmable multipliers to it, and output the clock
signal at the resulting frequency. The formula that the chip
uses to calculate the output frequency is as follows:

Output Frequency=Input frequency*(N/M)

The N and M values (along with some other options) are
user programmable. For better usability, some chips (e.g.,
CY28512) accept two separate pairs of N and M values, and
provides a way to switch between them. At initialization time,
one pair is programmed with a set of “low” multipliers for the
generation of a low output frequency, and the other pair with
a set of “high” multipliers for the generation of a high output
frequency. While the system is running, a control driver can
toggle between them dynamically to effectively turn the clock
frequency up and down. To slew the frequency slowly enough
so that the on-chip PLL of the CPU can follow the frequency
change, a number of frequency changes can be performed in
small steps.

One advantage of lowering the clock frequency is that it
allows the system to run at a lower voltage than normal to save
power and reduce heat. Thus, after turning the clock down,
the control driver can also turn the voltage down.

Some Graphics Processing Units (GPU) (e.g., the nVidia
GeForcedGo (NV17M)) have a variety of power saving fea-
tures designed (e.g., with a mobile application in mind).
Some of these features are automatic; and, others are manu-
ally settable. For example, NV17M allows the chip to turn off
unneeded areas to save power when they are not being used.
Unused blocks can power down, as they are not needed. For
example, the driver to an unattached display can be powered
off if a second display is not attached, or the MPEG decoder
cell turned off if there is no need for it. The hardware clock
saves power during tiny fractions of a second when the graph-
ics hardware is not being used to its fullest.

The configurable feature of the NV17M is the ability to
modify the swap interval. The swap interval defines the maxi-
mum number of frames the GPU renders per second. It also
defines the number of screen refreshes between redraws. The
overall effect is a change in GPU workload, which may also
change the workload of the CPU. For example, the GPU may
be configured to work at swap interval of 0 without power
saving, at swap interval of 1 to generate frames at no faster
than the display refresh rate, or at swap interval of 2 to
generate frames at half the display refresh rate. In one
embodiment of the present invention, the configurable swap
interval is manipulated to limit temperature.

In one embodiment of the present invention, devices that
act as sensors or controls are described in the device tree with
a set of properties added to the nodes in the device tree, such
as the type of sensor (i.e. temperature), a unique sensor 1D,
and the thermal zone of the sensor, location, polling period,
and others. During the initialization period, control drivers
and sensor drivers obtain this information from the device
tree. For example, a control driver gets from the device tree
information about the control, such as thermal zone,
attributes (e.g., performance hit, noisy, cooling device), type
of control (e.g., fan, processor, etc). The manager uses this
information in determining the instantaneous index value for
each control when new sensor values arrive. When an instan-
taneous index is received from the manager, the control driver
communicates with one or more device drivers to adjust the
control as necessary.



US 9,317,090 B2

25

A state manager connects the sensor drivers and the control
drivers to manage the working states of the components to
provide the desirable result. For example, the levels of power
and temperature dynamics may be control by the manager to
best perform the current task within power and thermal con-
straints. The manager chooses the most relevant thermal con-
trols to adjust, as well as how much to adjust. When some
sensors indicate that they are at a particularly low tempera-
ture, the polling of these sensors may be stopped after setting
a threshold at which the sensors notify the system to restart
polling them.

While the modules are functionally very independent, they
may be in separate drivers or combined drivers. For example,
some hardware device, such as fan controllers, may a com-
bined sensor and control driver. If the only temperature of
interest is the highest one of a number of thermistors, they
may be combined into a single sensor. Further, the Cooling,
Priority and Control Deciders may be just sets of routines
within a single code module. From this description, a person
skilled in the art can envision many different combinations,
modifications and variations.

FIGS. 14-16 show methods to operate a data processing
system according to embodiments of the present invention.

In FIG. 14, operation 1401 receives sensed information
from a plurality of physical sensors (e.g., thermistor, tachom-
eter) instrumented in a housing of a data processing system.
Operation 1403 receives load information on processing
loads (e.g., CPU load). Operation 1405 controls working
states of a plurality of components of the data processing
system in the housing according to the sensed information
and the load information. The sensed information and the
load information can be used to fine grain control the com-
ponents to balance different goals, such as high performance,
low power consumption, low acoustic noise, thermal con-
straints, user preferences, system design constraints, and oth-
ers.

In FIG. 15, after operation 1501 collects sensed informa-
tion (e.g., CPU load and processor temperatures) from a
plurality of sensors of a data processing system, operation
1503 determines a current state of the data processing system
based on the sensed information and user preferences. Opera-
tion 1505 determines a target state according to a predeter-
mined state diagram. Operation 1507 selectively adjusts a set
of controls to change working states of components of the
data processing system to move the system from the current
state to the target state. The state diagram may be pre-de-
signed to specify control adjustments for transition from one
state to another to balance different goals.

FIG. 18 illustrates an example of a state diagram which
shows a way to operate a data processing system according to
one embodiment of the present invention. In one embodiment
of'the present invention, the state of the system is determined
from the temperature and the position of the lid. When the
temperature is in the normal range, the system is either in state
1817 if the lid is in the open position or in state 1827 if the lid
is in the closed position. When the system is in state 1817 or
1827, the system is allowed to operate at a maximum perfor-
mance level. For example, the cooling provided by the CPU is
at the lowest level (e.g., 0%), allowing a fast dynamic speed
and the maximum computation performance; and, the cool-
ing provided by the GPU is also at the lowest level (e.g., 0%).
Itis understood that the cooling provided by a processor (e.g.,
CPU or GPU can be achieved through adjusting the working
state of the processor to reduce the power consumption and
the associated heat (e.g., through reducing the clock fre-
quency and the core voltage). However, in one embodiment,
when the lid is closed, the PMU is forced to run at a slow

10

20

25

30

35

40

45

50

55

60

65

26

speed. As the temperature T increases to pass thresholds
Talid—open’ Tblid—open’ Tclid—open’ and leid—open’ the state of the
system transits from state 1817 (normal) to states 1815
(warm), 1813 (very warm), 1811 (hot), and 1803 (very hot), if
the lid is open. Similarly, as the temperature T increases to
pass thresholds Talid—closedi Tblid—closedi Tclid—closedi and
T4, 1 iosear he state of the system transits from state 1827
(normal, 1id closed) to states 1825 (warm, lid closed), 1823
(very warm, lid closed), 1821 (hot, lid closed), and 1803 (very
hot, lid dosed), if the lid is closed. As the system goes into the
states of high temperatures, the working states of the compo-
nents of the system may be adjusted to cool down the system.
For example, when in state 1815 (1825, 1813, 1823, 1811 or
1821), the cooling of the CPU may be adjusted to a higher
level (e.g., 50%) to trade perfoi mance for cooling. For
example, the CPU may be forced into a slow dynamic speed.
Further, when in a very hot state (1803), the working state of
the CPU may be adjusted to provide maximum cooling (e.g.,
100%). Similarly, when in state 1813 (or 1823), the cooling of
the GPU may be adjusted to a higher level (e.g., 50%) to trade
performance for cooling; and, when in state 1811 (1821, or
1803), the working state of the GPU may be adjusted to
provide maximum cooling (e.g., 100%). To provide cooling
from the graphics system, DVD (or other optical drive) speed
may be reduced. When the temperature exceeds the safety
threshold (e.g., T>T,,,,,), the system moves into a too hot
state (1801), in which state PMU initiates a request for forced
sleep. If the system remains in the too hot state (e.g., for 4
minutes) without going to a sleep mode, PMU triggers a
forced shutdown. Without changing the temperature range,
the system may transit between a lid dosed state (e.g., 1821-
1827) and a corresponding lid open state (e.g., 1811-1817)
when the lid is opened or closed. When the system cools
down, working states of the components (e.g., CPU, GPU,
DVD) can be adjusted for higher performance. In FIG. 18,
different thresholds are used for defining the transition
between two states due to the change in temperature. For
example, when T>T%;, ., the system moves from state
1817 (normal) to state 1815 (warm); and, the system moves
back to state 1817 (normal) from state 1815 (warm) only
when T<T%, ;. ,,en=Tsysrerisis- The difference in the threshold,
T ystorisiss allows the system to be at one state when the tem-
perature fluctuates only slightly near one threshold, avoiding
unnecessary actions in adjusting working states.

Although one embodiment of the present invention uses
the state diagram illustrated in FIG. 18 and operations for
cooling adjustment for various states described above with
FIG. 18, it is understood that various different states of a state
diagram can be defined and used for the operation of a com-
puter system. Further, different transition paths and different
adjustments of working states to more or less components
(e.g., fan, memory chips, microprocessors, graphics chips,
hard drives, optical drives, bridge chips, and others) for cool-
ing and performances can be defined for different state dia-
grams for operating a data processing system. For example, in
one implementation, when T exceeds T, cooling fan is acti-
vated (e.g., 33% duty cycle for ADM103x); when T<T,, CPU
can run at full speed; when T exceeds T,, cooling fan runs at
full speed; when T exceeds T;, CPU is forced into reduced
speed mode; when T exceeds T, the system is forced to sleep,
or to shutdown if not responding to the request to sleep.

In FIG. 16, after operation 1601 collects sensed informa-
tion (e.g., CPU load and processor temperatures) from a
plurality of sensors of a data processing system, operation
1603 determines an amount of cooling change based on the
sensed information. For example, fuzzy logic principles and
inference rules can be used to determine the amount of cool-



US 9,317,090 B2

27

ing changes based on the sensed information. Operation 1605
determines a prioritized list of controls to balance different
goals (e.g., performance, power consumption, thermal con-
straint, acoustic noise, user preference, system constraint).
For example, an expert system can be used to prioritize the list
according to a number of system rules and user preferences.
Operation 1607 selectively adjusts a subset of the prioritized
list of controls to effect the amount of cooling change. The
amount of cooling change can be parceled out to one or more
controls according to the priorities of the controls.

FIG. 17 illustrates a method to parcel out cooling changes
to a number of controls according to one embodiment of the
present invention.

Ifoperation 1701 determines to increase cooling, operation
1711 first increases the speed of the cooling fan (e.g., up to the
maximum fan speed when necessary). If operation 1713
determines that more cooling is required, operation 1715
decreases the CPU clock frequency within the allowable fre-
quency range; and, operation 1717 decreases the CPU core
voltage within the allowable frequency range. This adjust-
mentto the CPU reduces the heat generation at the expense of
computation performance. Thus, the thermal constraint can
be maintained while running the system at high computation
performance.

If operation 1703 determines to decrease cooling, opera-
tion 1721 increases the CPU core voltage within the allow-
able voltage range; and, operation 1723 increases the CPU
clock frequency within the allowable frequency range. This
adjustment to the CPU increases the computation perfor-
mance of the CPU and heat generation, which corresponds to
decrease cooling. Ifthe CPU is at the maximum performance
state and operation 1725 determines less cooling is allowable,
operation 1727 decreases the speed of the cooling fan to
reduce noise and power consumption.

If operation 1731 determines that the CPU and the fan can
trade cooling, operation 1733 increases the CPU core voltage;
operation 1735 increases the CPU clock frequency; and,
operation 1737 increases the speed of the cooling fan. Thus,
the CPU is allowed to run at high performance, generating
more heat, which is removed by increased cooling from the
fan.

Thus, in FIG. 17, cooling efforts are parceled out between
the CPU and the cooling fan to have a high performance
within a thermal constraint. In general, the cooling efforts can
be parceled out (e.g., by a Control Decider) among a list of
controls according to priorities (e.g., as determined by a Pri-
ority Decider), which reflect the balancing of different goals,
such as performance, power consumption, thermal con-
straint, acoustic noise, user preference, system constraint).

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will be evident that various modifications may be
made thereto without departing from the broader spirit and
scope of the invention as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded in
an illustrative sense rather than a restrictive sense.

What is claimed is:

1. A non-transitory computer readable medium storing
computer instructions which when executed by a data pro-
cessing system cause the data processing system to perform a
method, the method comprising:

receiving load information about processing loads for one

or more processing units;

receiving, from one or more thermal sensors, thermal data

about the data processing system;

transitioning between multiple power states for each of the

one or more processing units based on the load informa-

10

30

40

45

65

28

tion and the thermal data, the multiple power states
including multiple states with different processor volt-
ages or processor frequencies, and wherein the data pro-
cessing system is configured to transition to a lower
power state to reduce heat produced by the data process-
ing system;

throttling thread scheduling based on the load information.

2. The medium as in claim 1 wherein the one or more
thermal sensors determine a temperature and wherein the
load information is provided by software, and wherein each
of the multiple power states is a working state of the one or
more processing units.

3. The medium of claim 2 wherein the data processing
system comprises a touchscreen coupled to the one or more
processing units.

4. The medium of claim 2 wherein the throttling of thread
scheduling is performed by a software component of an oper-
ating system.

5. The medium of claim 1 wherein the multiple power
states comprise an idle state and a plurality of working states
for each of the processing units.

6. The medium of claim 5 wherein the data processing
system includes a plurality of processing units, each of which
is independently transitioned between multiple power states
by an operating system.

7. The medium of claim 6 wherein each processing unit in
the plurality of processing units is in a working state when
there are threads waiting to be scheduled on the processing
unit.

8. The medium of claim 7 wherein the throttling of thread
scheduling is based on a priority list and is performed by the
operating system.

9. The medium of claim 8 wherein the data processing
system comprises a touchscreen coupled to the plurality of
processing units and the plurality of processing units com-
prises at least one graphics processing unit, and wherein the
operating system causes the plurality of processing units to
transition between multiple power states also based on one or
more user preferences settings and battery life.

10. A method performed by a data processing system, the
method comprising:

receiving load information about processing loads for one

or more processing units;

receiving, from one or more thermal sensors, the mal data

about the data processing system;

transitioning between multiple power states for each of the

one or more processing units based on the load informa-
tion and the thermal data, the multiple power states
including multiple states with different processor volt-
ages or processor frequencies, and wherein the data pro-
cessing system is configured to transition to a lower
power state to reduce heat produced by the data process-
ing system;

throttling thread scheduling based on the load information.

11. The method as in claim 10 wherein the one or more
thermal sensors determine a temperature and wherein the
load information is provided by software, and wherein each
of the multiple power states is a working state of the one or
more processing units.

12. The method of claim 11 wherein the data processing
system comprises a touchscreen coupled to the one or more
processing units.

13. The method of claim 11 wherein the throttling of thread
scheduling is performed by a software component of an oper-
ating system.



US 9,317,090 B2

29

14. The method of claim 10 wherein the multiple power
states comprise an idle state and a plurality of working states
for each of the processing units.

15. The method of claim 14 wherein the data processing
system includes a plurality of processing units, each of which
is independently transitioned between multiple power states
by an operating system.

16. The method of claim 15 wherein each processing unit in
the plurality of processing units is in a working state when
there are threads waiting to be scheduled on the processing
unit.

17. The method of claim 16 wherein the throttling of thread
scheduling is based on a priority list and is performed by the
operating system.

18. The method of claim 17 wherein the data processing
system comprises a touchscreen coupled to the plurality of
processing units and the plurality of processing units com-
prises at least one graphics processing unit, and wherein the
operating system causes the plurality of processing units to
transition between multiple power settings also based on one
or more user preferences settings and battery life.

15

30

19. A data processing system comprising:

a plurality of processing units;

a memory coupled to the plurality of processing units;

one or more thermal sensors coupled to at least one of the

plurality of processing units; and

wherein the memory stores an operating system which

receives thermal data about the data processing system
and obtains load information about processing loads on
the plurality of processing units, and wherein the oper-
ating system causes each processing unit in the plurality
of processing units to transition independently between
multiple power states based on the load information and
the thermal data, and the operating system throttles
thread scheduling based on the load information.

20. The system of claim 19 wherein the operating system
causes each processing unit in the plurality of processing
units to transition independently between multiple power
states based also on one or more user preference settings and
battery life.



